MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem6 Structured version   Visualization version   GIF version

Theorem prmgaplem6 15760
Description: Lemma for prmgap 15763: for each positive integer there is a greater prime closest to this integer, i.e. there is a greater prime and no other prime is between this prime and the integer. (Contributed by AV, 10-Aug-2020.)
Assertion
Ref Expression
prmgaplem6 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
Distinct variable group:   𝑁,𝑝,𝑧

Proof of Theorem prmgaplem6
Dummy variables 𝑛 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmunb 15618 . 2 (𝑁 ∈ ℕ → ∃𝑛 ∈ ℙ 𝑁 < 𝑛)
2 eqid 2622 . . . . 5 {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} = {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}
32prmgaplem4 15758 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ∃𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧)
4 breq2 4657 . . . . . . . . 9 (𝑞 = 𝑝 → (𝑁 < 𝑞𝑁 < 𝑝))
5 breq1 4656 . . . . . . . . 9 (𝑞 = 𝑝 → (𝑞𝑛𝑝𝑛))
64, 5anbi12d 747 . . . . . . . 8 (𝑞 = 𝑝 → ((𝑁 < 𝑞𝑞𝑛) ↔ (𝑁 < 𝑝𝑝𝑛)))
76elrab 3363 . . . . . . 7 (𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} ↔ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))
8 simplrl 800 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → 𝑝 ∈ ℙ)
9 simprrl 804 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → 𝑁 < 𝑝)
109adantr 481 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → 𝑁 < 𝑝)
11 simpll 790 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → 𝑧 ∈ ℙ)
12 elfzo2 12473 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ((𝑁 + 1)..^𝑝) ↔ (𝑧 ∈ (ℤ‘(𝑁 + 1)) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝))
13 eluz2 11693 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (ℤ‘(𝑁 + 1)) ↔ ((𝑁 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑧))
14 nnz 11399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
15 prmz 15389 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
16 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑁 < 𝑧 ↔ (𝑁 + 1) ≤ 𝑧))
1714, 15, 16syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℙ) → (𝑁 < 𝑧 ↔ (𝑁 + 1) ≤ 𝑧))
1817exbiri 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑁 ∈ ℕ → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
19183ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
2019adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (𝑧 ∈ ℙ → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧)))
2120impcom 446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((𝑁 + 1) ≤ 𝑧𝑁 < 𝑧))
2221com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 + 1) ≤ 𝑧 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2322adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2423adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → 𝑁 < 𝑧))
2524imp 445 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → 𝑁 < 𝑧)
26 prmnn 15388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
2726nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
2827ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑧 ∈ ℝ)
29 prmnn 15388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
3029nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
3130adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
3231adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑝 ∈ ℝ)
33 prmnn 15388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
3433nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℙ → 𝑛 ∈ ℝ)
3534adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → 𝑛 ∈ ℝ)
36 ltleletr 10130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((𝑧 < 𝑝𝑝𝑛) → 𝑧𝑛))
3728, 32, 35, 36syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℙ ∧ (𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ)) → ((𝑧 < 𝑝𝑝𝑛) → 𝑧𝑛))
3837exp4b 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 ∈ ℙ → ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛))))
39383ad2ant2 1083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑧 ∈ ℙ ∧ 𝑝 ∈ ℙ) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛))))
4039expdcom 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ ℙ → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 < 𝑝 → (𝑝𝑛𝑧𝑛)))))
4140com45 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ ℙ → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑝𝑛 → (𝑧 < 𝑝𝑧𝑛)))))
4241com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑝𝑛 → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))))
4342adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 < 𝑝𝑝𝑛) → (𝑝 ∈ ℙ → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))))
4443impcom 446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)) → ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛))))
4544impcom 446 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (𝑧 ∈ ℙ → (𝑧 < 𝑝𝑧𝑛)))
4645impcom 446 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 < 𝑝𝑧𝑛))
4746adantld 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) → 𝑧𝑛))
4847impcom 446 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → 𝑧𝑛)
4925, 48jca 554 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 + 1) ≤ 𝑧𝑝 ∈ ℤ) ∧ 𝑧 < 𝑝) ∧ (𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))))) → (𝑁 < 𝑧𝑧𝑛))
5049exp41 638 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 + 1) ≤ 𝑧 → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
51503ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 + 1) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑧) → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
5213, 51sylbi 207 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (ℤ‘(𝑁 + 1)) → (𝑝 ∈ ℤ → (𝑧 < 𝑝 → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))))
53523imp 1256 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ (ℤ‘(𝑁 + 1)) ∧ 𝑝 ∈ ℤ ∧ 𝑧 < 𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))
5412, 53sylbi 207 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((𝑁 + 1)..^𝑝) → ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑁 < 𝑧𝑧𝑛)))
5554impcom 446 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → (𝑁 < 𝑧𝑧𝑛))
56 breq2 4657 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 𝑧 → (𝑁 < 𝑞𝑁 < 𝑧))
57 breq1 4656 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 𝑧 → (𝑞𝑛𝑧𝑛))
5856, 57anbi12d 747 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 𝑧 → ((𝑁 < 𝑞𝑞𝑛) ↔ (𝑁 < 𝑧𝑧𝑛)))
5958elrab 3363 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} ↔ (𝑧 ∈ ℙ ∧ (𝑁 < 𝑧𝑧𝑛)))
6011, 55, 59sylanbrc 698 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → 𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)})
61 elfzolt2 12479 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 < 𝑝)
6230ad2antrl 764 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → 𝑝 ∈ ℝ)
63 ltnle 10117 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑧 < 𝑝 ↔ ¬ 𝑝𝑧))
6463biimpd 219 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑧 < 𝑝 → ¬ 𝑝𝑧))
6527, 62, 64syl2an 494 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 < 𝑝 → ¬ 𝑝𝑧))
6665imp 445 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 < 𝑝) → ¬ 𝑝𝑧)
6766pm2.21d 118 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 < 𝑝) → (𝑝𝑧𝑧 ∉ ℙ))
6861, 67sylan2 491 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → (𝑝𝑧𝑧 ∉ ℙ))
6960, 68embantd 59 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) ∧ 𝑧 ∈ ((𝑁 + 1)..^𝑝)) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → 𝑧 ∉ ℙ))
7069ex 450 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → 𝑧 ∉ ℙ)))
7170com23 86 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℙ ∧ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7271ex 450 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
73 df-nel 2898 . . . . . . . . . . . . . 14 (𝑧 ∉ ℙ ↔ ¬ 𝑧 ∈ ℙ)
74 ax-1 6 . . . . . . . . . . . . . . . 16 (𝑧 ∉ ℙ → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))
7574a1d 25 . . . . . . . . . . . . . . 15 (𝑧 ∉ ℙ → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7675a1d 25 . . . . . . . . . . . . . 14 (𝑧 ∉ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
7773, 76sylbir 225 . . . . . . . . . . . . 13 𝑧 ∈ ℙ → (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ))))
7872, 77pm2.61i 176 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → ((𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → 𝑝𝑧) → (𝑧 ∈ ((𝑁 + 1)..^𝑝) → 𝑧 ∉ ℙ)))
7978ralimdv2 2961 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
8079imp 445 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)
818, 10, 80jca32 558 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
8281ex 450 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛))) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))))
8382ex 450 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝𝑛)) → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))))
847, 83syl5bi 232 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} → (∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))))
8584impd 447 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ((𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)} ∧ ∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧) → (𝑝 ∈ ℙ ∧ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))))
8685reximdv2 3014 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → (∃𝑝 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}∀𝑧 ∈ {𝑞 ∈ ℙ ∣ (𝑁 < 𝑞𝑞𝑛)}𝑝𝑧 → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
873, 86mpd 15 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ ∧ 𝑁 < 𝑛) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
8887rexlimdv3a 3033 . 2 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℙ 𝑁 < 𝑛 → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ)))
891, 88mpd 15 1 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ (𝑁 < 𝑝 ∧ ∀𝑧 ∈ ((𝑁 + 1)..^𝑝)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wnel 2897  wral 2912  wrex 2913  {crab 2916   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cn 11020  cz 11377  cuz 11687  ..^cfzo 12465  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  prmgaplem7  15761
  Copyright terms: Public domain W3C validator