Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem3 Structured version   Visualization version   GIF version

Theorem faclimlem3 31631
Description: Lemma for faclim 31632. Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))

Proof of Theorem faclimlem3
StepHypRef Expression
1 1rp 11836 . . . . . . . 8 1 ∈ ℝ+
21a1i 11 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 1 ∈ ℝ+)
3 nnrp 11842 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
43rpreccld 11882 . . . . . . . 8 (𝐵 ∈ ℕ → (1 / 𝐵) ∈ ℝ+)
54adantl 482 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 / 𝐵) ∈ ℝ+)
62, 5rpaddcld 11887 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (1 / 𝐵)) ∈ ℝ+)
76rpcnd 11874 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (1 / 𝐵)) ∈ ℂ)
8 simpl 473 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 𝑀 ∈ ℕ0)
97, 8expp1d 13009 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑(𝑀 + 1)) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵))))
101a1i 11 . . . . . . . . 9 (𝐵 ∈ ℕ → 1 ∈ ℝ+)
1110, 4rpaddcld 11887 . . . . . . . 8 (𝐵 ∈ ℕ → (1 + (1 / 𝐵)) ∈ ℝ+)
12 nn0z 11400 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
13 rpexpcl 12879 . . . . . . . 8 (((1 + (1 / 𝐵)) ∈ ℝ+𝑀 ∈ ℤ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℝ+)
1411, 12, 13syl2anr 495 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℝ+)
1514rpcnd 11874 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑𝑀) ∈ ℂ)
16 1cnd 10056 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 1 ∈ ℂ)
17 nn0nndivcl 11362 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 / 𝐵) ∈ ℝ)
1817recnd 10068 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 / 𝐵) ∈ ℂ)
1916, 18addcomd 10238 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) = ((𝑀 / 𝐵) + 1))
20 nn0ge0div 11446 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 0 ≤ (𝑀 / 𝐵))
2117, 20ge0p1rpd 11902 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑀 / 𝐵) + 1) ∈ ℝ+)
2219, 21eqeltrd 2701 . . . . . . 7 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ∈ ℝ+)
2322rpcnd 11874 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ∈ ℂ)
2422rpne0d 11877 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + (𝑀 / 𝐵)) ≠ 0)
2515, 23, 24divcan1d 10802 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) = ((1 + (1 / 𝐵))↑𝑀))
2625oveq1d 6665 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = (((1 + (1 / 𝐵))↑𝑀) · (1 + (1 / 𝐵))))
2714, 22rpdivcld 11889 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈ ℝ+)
2827rpcnd 11874 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) ∈ ℂ)
2928, 23, 7mulassd 10063 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (1 + (𝑀 / 𝐵))) · (1 + (1 / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))))
309, 26, 293eqtr2d 2662 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (1 / 𝐵))↑(𝑀 + 1)) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))))
3130oveq1d 6665 . 2 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵))))
3222, 6rpmulcld 11888 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈ ℝ+)
3332rpcnd 11874 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) ∈ ℂ)
34 nn0p1nn 11332 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
3534nnrpd 11870 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℝ+)
3635adantr 481 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (𝑀 + 1) ∈ ℝ+)
373adantl 482 . . . . . 6 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℝ+)
3836, 37rpdivcld 11889 . . . . 5 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑀 + 1) / 𝐵) ∈ ℝ+)
392, 38rpaddcld 11887 . . . 4 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ∈ ℝ+)
4039rpcnd 11874 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ∈ ℂ)
4139rpne0d 11877 . . 3 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (1 + ((𝑀 + 1) / 𝐵)) ≠ 0)
4228, 33, 40, 41divassd 10836 . 2 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · ((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵)))) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))
4331, 42eqtrd 2656 1 ((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  (class class class)co 6650  1c1 9937   + caddc 9939   · cmul 9941   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  +crp 11832  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861
This theorem is referenced by:  faclim  31632
  Copyright terms: Public domain W3C validator