Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftfva Structured version   Visualization version   GIF version

Theorem fargshiftfva 41379
Description: The values of a shifted function correspond to the value of the original function. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(#‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftfva ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
Distinct variable groups:   𝑥,𝑘,𝐹   𝑥,𝐸   𝑘,𝐹,𝑙,𝑥   𝑥,𝑁   𝑘,𝐸   𝑘,𝐺   𝑘,𝑁   𝑃,𝑘   𝐸,𝑙   𝑁,𝑙   𝑃,𝑙
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥,𝑙)

Proof of Theorem fargshiftfva
StepHypRef Expression
1 fz0add1fz1 12537 . . . . . . 7 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → (𝑙 + 1) ∈ (1...𝑁))
2 simpl 473 . . . . . . . . . . 11 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (𝑙 + 1) ∈ (1...𝑁))
32adantr 481 . . . . . . . . . 10 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 + 1) ∈ (1...𝑁))
4 fveq2 6191 . . . . . . . . . . . . . 14 (𝑘 = (𝑙 + 1) → (𝐹𝑘) = (𝐹‘(𝑙 + 1)))
54fveq2d 6195 . . . . . . . . . . . . 13 (𝑘 = (𝑙 + 1) → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘(𝑙 + 1))))
6 csbeq1 3536 . . . . . . . . . . . . 13 (𝑘 = (𝑙 + 1) → 𝑘 / 𝑥𝑃 = (𝑙 + 1) / 𝑥𝑃)
75, 6eqeq12d 2637 . . . . . . . . . . . 12 (𝑘 = (𝑙 + 1) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃))
87adantl 482 . . . . . . . . . . 11 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃))
9 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
109adantl 482 . . . . . . . . . . . . . . . 16 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → 𝑁 ∈ ℕ0)
1110anim1i 592 . . . . . . . . . . . . . . 15 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸))
1211adantr 481 . . . . . . . . . . . . . 14 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸))
13 simpr 477 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → 𝑙 ∈ (0..^𝑁))
1413ad3antlr 767 . . . . . . . . . . . . . 14 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → 𝑙 ∈ (0..^𝑁))
15 fargshift.g . . . . . . . . . . . . . . . . 17 𝐺 = (𝑥 ∈ (0..^(#‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
1615fargshiftfv 41375 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 ∈ (0..^𝑁) → (𝐺𝑙) = (𝐹‘(𝑙 + 1))))
1716imp 445 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐺𝑙) = (𝐹‘(𝑙 + 1)))
1817eqcomd 2628 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐹‘(𝑙 + 1)) = (𝐺𝑙))
1912, 14, 18syl2anc 693 . . . . . . . . . . . . 13 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝐹‘(𝑙 + 1)) = (𝐺𝑙))
2019fveq2d 6195 . . . . . . . . . . . 12 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝐸‘(𝐹‘(𝑙 + 1))) = (𝐸‘(𝐺𝑙)))
2120eqeq1d 2624 . . . . . . . . . . 11 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃 ↔ (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
228, 21bitrd 268 . . . . . . . . . 10 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
233, 22rspcdv 3312 . . . . . . . . 9 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
2423ex 450 . . . . . . . 8 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
2524com23 86 . . . . . . 7 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
261, 25mpancom 703 . . . . . 6 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
2726ex 450 . . . . 5 (𝑁 ∈ ℕ0 → (𝑙 ∈ (0..^𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))))
2827com24 95 . . . 4 (𝑁 ∈ ℕ0 → (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))))
2928imp31 448 . . 3 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃) → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
3029ralrimiv 2965 . 2 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃) → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)
3130ex 450 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  csb 3533  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  0cn0 11292  ...cfz 12326  ..^cfzo 12465  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator