Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftfva Structured version   Visualization version   Unicode version

Theorem fargshiftfva 41379
Description: The values of a shifted function correspond to the value of the original function. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g  |-  G  =  ( x  e.  ( 0..^ ( # `  F
) )  |->  ( F `
 ( x  + 
1 ) ) )
Assertion
Ref Expression
fargshiftfva  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom  E
)  ->  ( A. k  e.  ( 1 ... N ) ( E `  ( F `
 k ) )  =  [_ k  /  x ]_ P  ->  A. l  e.  ( 0..^ N ) ( E `  ( G `  l )
)  =  [_ (
l  +  1 )  /  x ]_ P
) )
Distinct variable groups:    x, k, F    x, E    k, F, l, x    x, N    k, E    k, G    k, N    P, k    E, l    N, l    P, l
Allowed substitution hints:    P( x)    G( x, l)

Proof of Theorem fargshiftfva
StepHypRef Expression
1 fz0add1fz1 12537 . . . . . . 7  |-  ( ( N  e.  NN0  /\  l  e.  ( 0..^ N ) )  -> 
( l  +  1 )  e.  ( 1 ... N ) )
2 simpl 473 . . . . . . . . . . 11  |-  ( ( ( l  +  1 )  e.  ( 1 ... N )  /\  ( N  e.  NN0  /\  l  e.  ( 0..^ N ) ) )  ->  ( l  +  1 )  e.  ( 1 ... N ) )
32adantr 481 . . . . . . . . . 10  |-  ( ( ( ( l  +  1 )  e.  ( 1 ... N )  /\  ( N  e. 
NN0  /\  l  e.  ( 0..^ N ) ) )  /\  F :
( 1 ... N
) --> dom  E )  ->  ( l  +  1 )  e.  ( 1 ... N ) )
4 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  ( l  +  1 )  ->  ( F `  k )  =  ( F `  ( l  +  1 ) ) )
54fveq2d 6195 . . . . . . . . . . . . 13  |-  ( k  =  ( l  +  1 )  ->  ( E `  ( F `  k ) )  =  ( E `  ( F `  ( l  +  1 ) ) ) )
6 csbeq1 3536 . . . . . . . . . . . . 13  |-  ( k  =  ( l  +  1 )  ->  [_ k  /  x ]_ P  = 
[_ ( l  +  1 )  /  x ]_ P )
75, 6eqeq12d 2637 . . . . . . . . . . . 12  |-  ( k  =  ( l  +  1 )  ->  (
( E `  ( F `  k )
)  =  [_ k  /  x ]_ P  <->  ( E `  ( F `  (
l  +  1 ) ) )  =  [_ ( l  +  1 )  /  x ]_ P ) )
87adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( ( l  +  1 )  e.  ( 1 ... N
)  /\  ( N  e.  NN0  /\  l  e.  ( 0..^ N ) ) )  /\  F : ( 1 ... N ) --> dom  E
)  /\  k  =  ( l  +  1 ) )  ->  (
( E `  ( F `  k )
)  =  [_ k  /  x ]_ P  <->  ( E `  ( F `  (
l  +  1 ) ) )  =  [_ ( l  +  1 )  /  x ]_ P ) )
9 simpl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  l  e.  ( 0..^ N ) )  ->  N  e.  NN0 )
109adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( l  +  1 )  e.  ( 1 ... N )  /\  ( N  e.  NN0  /\  l  e.  ( 0..^ N ) ) )  ->  N  e.  NN0 )
1110anim1i 592 . . . . . . . . . . . . . . 15  |-  ( ( ( ( l  +  1 )  e.  ( 1 ... N )  /\  ( N  e. 
NN0  /\  l  e.  ( 0..^ N ) ) )  /\  F :
( 1 ... N
) --> dom  E )  ->  ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom 
E ) )
1211adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( l  +  1 )  e.  ( 1 ... N
)  /\  ( N  e.  NN0  /\  l  e.  ( 0..^ N ) ) )  /\  F : ( 1 ... N ) --> dom  E
)  /\  k  =  ( l  +  1 ) )  ->  ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom  E
) )
13 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  l  e.  ( 0..^ N ) )  -> 
l  e.  ( 0..^ N ) )
1413ad3antlr 767 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( l  +  1 )  e.  ( 1 ... N
)  /\  ( N  e.  NN0  /\  l  e.  ( 0..^ N ) ) )  /\  F : ( 1 ... N ) --> dom  E
)  /\  k  =  ( l  +  1 ) )  ->  l  e.  ( 0..^ N ) )
15 fargshift.g . . . . . . . . . . . . . . . . 17  |-  G  =  ( x  e.  ( 0..^ ( # `  F
) )  |->  ( F `
 ( x  + 
1 ) ) )
1615fargshiftfv 41375 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom  E
)  ->  ( l  e.  ( 0..^ N )  ->  ( G `  l )  =  ( F `  ( l  +  1 ) ) ) )
1716imp 445 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom 
E )  /\  l  e.  ( 0..^ N ) )  ->  ( G `  l )  =  ( F `  ( l  +  1 ) ) )
1817eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom 
E )  /\  l  e.  ( 0..^ N ) )  ->  ( F `  ( l  +  1 ) )  =  ( G `  l ) )
1912, 14, 18syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ( l  +  1 )  e.  ( 1 ... N
)  /\  ( N  e.  NN0  /\  l  e.  ( 0..^ N ) ) )  /\  F : ( 1 ... N ) --> dom  E
)  /\  k  =  ( l  +  1 ) )  ->  ( F `  ( l  +  1 ) )  =  ( G `  l ) )
2019fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( ( l  +  1 )  e.  ( 1 ... N
)  /\  ( N  e.  NN0  /\  l  e.  ( 0..^ N ) ) )  /\  F : ( 1 ... N ) --> dom  E
)  /\  k  =  ( l  +  1 ) )  ->  ( E `  ( F `  ( l  +  1 ) ) )  =  ( E `  ( G `  l )
) )
2120eqeq1d 2624 . . . . . . . . . . 11  |-  ( ( ( ( ( l  +  1 )  e.  ( 1 ... N
)  /\  ( N  e.  NN0  /\  l  e.  ( 0..^ N ) ) )  /\  F : ( 1 ... N ) --> dom  E
)  /\  k  =  ( l  +  1 ) )  ->  (
( E `  ( F `  ( l  +  1 ) ) )  =  [_ (
l  +  1 )  /  x ]_ P  <->  ( E `  ( G `
 l ) )  =  [_ ( l  +  1 )  /  x ]_ P ) )
228, 21bitrd 268 . . . . . . . . . 10  |-  ( ( ( ( ( l  +  1 )  e.  ( 1 ... N
)  /\  ( N  e.  NN0  /\  l  e.  ( 0..^ N ) ) )  /\  F : ( 1 ... N ) --> dom  E
)  /\  k  =  ( l  +  1 ) )  ->  (
( E `  ( F `  k )
)  =  [_ k  /  x ]_ P  <->  ( E `  ( G `  l
) )  =  [_ ( l  +  1 )  /  x ]_ P ) )
233, 22rspcdv 3312 . . . . . . . . 9  |-  ( ( ( ( l  +  1 )  e.  ( 1 ... N )  /\  ( N  e. 
NN0  /\  l  e.  ( 0..^ N ) ) )  /\  F :
( 1 ... N
) --> dom  E )  ->  ( A. k  e.  ( 1 ... N
) ( E `  ( F `  k ) )  =  [_ k  /  x ]_ P  -> 
( E `  ( G `  l )
)  =  [_ (
l  +  1 )  /  x ]_ P
) )
2423ex 450 . . . . . . . 8  |-  ( ( ( l  +  1 )  e.  ( 1 ... N )  /\  ( N  e.  NN0  /\  l  e.  ( 0..^ N ) ) )  ->  ( F :
( 1 ... N
) --> dom  E  ->  ( A. k  e.  ( 1 ... N ) ( E `  ( F `  k )
)  =  [_ k  /  x ]_ P  -> 
( E `  ( G `  l )
)  =  [_ (
l  +  1 )  /  x ]_ P
) ) )
2524com23 86 . . . . . . 7  |-  ( ( ( l  +  1 )  e.  ( 1 ... N )  /\  ( N  e.  NN0  /\  l  e.  ( 0..^ N ) ) )  ->  ( A. k  e.  ( 1 ... N
) ( E `  ( F `  k ) )  =  [_ k  /  x ]_ P  -> 
( F : ( 1 ... N ) --> dom  E  ->  ( E `  ( G `  l ) )  = 
[_ ( l  +  1 )  /  x ]_ P ) ) )
261, 25mpancom 703 . . . . . 6  |-  ( ( N  e.  NN0  /\  l  e.  ( 0..^ N ) )  -> 
( A. k  e.  ( 1 ... N
) ( E `  ( F `  k ) )  =  [_ k  /  x ]_ P  -> 
( F : ( 1 ... N ) --> dom  E  ->  ( E `  ( G `  l ) )  = 
[_ ( l  +  1 )  /  x ]_ P ) ) )
2726ex 450 . . . . 5  |-  ( N  e.  NN0  ->  ( l  e.  ( 0..^ N )  ->  ( A. k  e.  ( 1 ... N ) ( E `  ( F `
 k ) )  =  [_ k  /  x ]_ P  ->  ( F : ( 1 ... N ) --> dom  E  ->  ( E `  ( G `  l )
)  =  [_ (
l  +  1 )  /  x ]_ P
) ) ) )
2827com24 95 . . . 4  |-  ( N  e.  NN0  ->  ( F : ( 1 ... N ) --> dom  E  ->  ( A. k  e.  ( 1 ... N
) ( E `  ( F `  k ) )  =  [_ k  /  x ]_ P  -> 
( l  e.  ( 0..^ N )  -> 
( E `  ( G `  l )
)  =  [_ (
l  +  1 )  /  x ]_ P
) ) ) )
2928imp31 448 . . 3  |-  ( ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom 
E )  /\  A. k  e.  ( 1 ... N ) ( E `  ( F `
 k ) )  =  [_ k  /  x ]_ P )  -> 
( l  e.  ( 0..^ N )  -> 
( E `  ( G `  l )
)  =  [_ (
l  +  1 )  /  x ]_ P
) )
3029ralrimiv 2965 . 2  |-  ( ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom 
E )  /\  A. k  e.  ( 1 ... N ) ( E `  ( F `
 k ) )  =  [_ k  /  x ]_ P )  ->  A. l  e.  (
0..^ N ) ( E `  ( G `
 l ) )  =  [_ ( l  +  1 )  /  x ]_ P )
3130ex 450 1  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom  E
)  ->  ( A. k  e.  ( 1 ... N ) ( E `  ( F `
 k ) )  =  [_ k  /  x ]_ P  ->  A. l  e.  ( 0..^ N ) ( E `  ( G `  l )
)  =  [_ (
l  +  1 )  /  x ]_ P
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   [_csb 3533    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator