| Step | Hyp | Ref
| Expression |
| 1 | | fof 6115 |
. . 3
⊢ (𝐹:(1...𝑁)–onto→dom 𝐸 → 𝐹:(1...𝑁)⟶dom 𝐸) |
| 2 | | fargshift.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ (0..^(#‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) |
| 3 | 2 | fargshiftf 41376 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(#‘𝐹))⟶dom 𝐸) |
| 4 | 1, 3 | sylan2 491 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(#‘𝐹))⟶dom 𝐸) |
| 5 | 2 | rnmpt 5371 |
. . 3
⊢ ran 𝐺 = {𝑦 ∣ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} |
| 6 | | fofn 6117 |
. . . . . 6
⊢ (𝐹:(1...𝑁)–onto→dom 𝐸 → 𝐹 Fn (1...𝑁)) |
| 7 | | fnrnfv 6242 |
. . . . . 6
⊢ (𝐹 Fn (1...𝑁) → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)}) |
| 8 | 6, 7 | syl 17 |
. . . . 5
⊢ (𝐹:(1...𝑁)–onto→dom 𝐸 → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)}) |
| 9 | 8 | adantl 482 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)}) |
| 10 | | df-fo 5894 |
. . . . . . 7
⊢ (𝐹:(1...𝑁)–onto→dom 𝐸 ↔ (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸)) |
| 11 | 10 | biimpi 206 |
. . . . . 6
⊢ (𝐹:(1...𝑁)–onto→dom 𝐸 → (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸)) |
| 12 | 11 | adantl 482 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸)) |
| 13 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (ran
𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} ↔ dom 𝐸 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)})) |
| 14 | | eqcom 2629 |
. . . . . . . . 9
⊢ (dom
𝐸 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} ↔ {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} = dom 𝐸) |
| 15 | 13, 14 | syl6bb 276 |
. . . . . . . 8
⊢ (ran
𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} ↔ {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} = dom 𝐸)) |
| 16 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢ (𝐹:(1...𝑁)⟶dom 𝐸 → 𝐹 Fn (1...𝑁)) |
| 17 | | fseq1hash 13165 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹 Fn (1...𝑁)) → (#‘𝐹) = 𝑁) |
| 18 | 16, 17 | sylan2 491 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (#‘𝐹) = 𝑁) |
| 19 | 1, 18 | sylan2 491 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → (#‘𝐹) = 𝑁) |
| 20 | | fz0add1fz1 12537 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (1...𝑁)) |
| 21 | | nn0z 11400 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 22 | | fzval3 12536 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℤ →
(1...𝑁) = (1..^(𝑁 + 1))) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (1...𝑁) =
(1..^(𝑁 +
1))) |
| 24 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
| 25 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℂ) |
| 26 | 24, 25 | addcomd 10238 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) = (1 + 𝑁)) |
| 27 | 26 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (1..^(𝑁 + 1)) =
(1..^(1 + 𝑁))) |
| 28 | 23, 27 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ (1...𝑁) = (1..^(1 +
𝑁))) |
| 29 | 28 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (𝑧 ∈ (1...𝑁) ↔ 𝑧 ∈ (1..^(1 + 𝑁)))) |
| 30 | 29 | biimpa 501 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ (1...𝑁)) → 𝑧 ∈ (1..^(1 + 𝑁))) |
| 31 | 21 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ (1...𝑁)) → 𝑁 ∈ ℤ) |
| 32 | | fzosubel3 12528 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ (1..^(1 + 𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑧 − 1) ∈ (0..^𝑁)) |
| 33 | 30, 31, 32 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ (1...𝑁)) → (𝑧 − 1) ∈ (0..^𝑁)) |
| 34 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑧 − 1) → (𝑥 + 1) = ((𝑧 − 1) + 1)) |
| 35 | 34 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑧 − 1) → (𝑧 = (𝑥 + 1) ↔ 𝑧 = ((𝑧 − 1) + 1))) |
| 36 | 35 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ 𝑧 ∈ (1...𝑁)) ∧ 𝑥 = (𝑧 − 1)) → (𝑧 = (𝑥 + 1) ↔ 𝑧 = ((𝑧 − 1) + 1))) |
| 37 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℤ) |
| 38 | 37 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℂ) |
| 39 | 38 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ (1...𝑁)) → 𝑧 ∈ ℂ) |
| 40 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ (1...𝑁)) → 1 ∈
ℂ) |
| 41 | 39, 40 | npcand 10396 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ (1...𝑁)) → ((𝑧 − 1) + 1) = 𝑧) |
| 42 | 41 | eqcomd 2628 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ (1...𝑁)) → 𝑧 = ((𝑧 − 1) + 1)) |
| 43 | 33, 36, 42 | rspcedvd 3317 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ (1...𝑁)) → ∃𝑥 ∈ (0..^𝑁)𝑧 = (𝑥 + 1)) |
| 44 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑥 + 1) → (𝐹‘𝑧) = (𝐹‘(𝑥 + 1))) |
| 45 | 44 | eqeq2d 2632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑥 + 1) → (𝑦 = (𝐹‘𝑧) ↔ 𝑦 = (𝐹‘(𝑥 + 1)))) |
| 46 | 45 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 = (𝑥 + 1)) → (𝑦 = (𝐹‘𝑧) ↔ 𝑦 = (𝐹‘(𝑥 + 1)))) |
| 47 | 20, 43, 46 | rexxfrd 4881 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ (∃𝑧 ∈
(1...𝑁)𝑦 = (𝐹‘𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1)))) |
| 48 | 47 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (#‘𝐹) = 𝑁) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1)))) |
| 49 | | oveq2 6658 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝐹) = 𝑁 → (0..^(#‘𝐹)) = (0..^𝑁)) |
| 50 | 49 | rexeqdv 3145 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 𝑁 → (∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1)) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1)))) |
| 51 | 50 | bibi2d 332 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 𝑁 → ((∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧) ↔ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))) ↔ (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))) |
| 52 | 51 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (#‘𝐹) = 𝑁) → ((∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧) ↔ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))) ↔ (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))) |
| 53 | 48, 52 | mpbird 247 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (#‘𝐹) = 𝑁) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧) ↔ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1)))) |
| 54 | 19, 53 | syldan 487 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧) ↔ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1)))) |
| 55 | 54 | abbidv 2741 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} = {𝑦 ∣ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))}) |
| 56 | 55 | eqeq1d 2624 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → ({𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} = dom 𝐸 ↔ {𝑦 ∣ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)) |
| 57 | 56 | biimpcd 239 |
. . . . . . . 8
⊢ ({𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} = dom 𝐸 → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)) |
| 58 | 15, 57 | syl6bi 243 |
. . . . . . 7
⊢ (ran
𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))) |
| 59 | 58 | com23 86 |
. . . . . 6
⊢ (ran
𝐹 = dom 𝐸 → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))) |
| 60 | 59 | adantl 482 |
. . . . 5
⊢ ((𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸) → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))) |
| 61 | 12, 60 | mpcom 38 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹‘𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)) |
| 62 | 9, 61 | mpd 15 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(#‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸) |
| 63 | 5, 62 | syl5eq 2668 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → ran 𝐺 = dom 𝐸) |
| 64 | | dffo2 6119 |
. 2
⊢ (𝐺:(0..^(#‘𝐹))–onto→dom 𝐸 ↔ (𝐺:(0..^(#‘𝐹))⟶dom 𝐸 ∧ ran 𝐺 = dom 𝐸)) |
| 65 | 4, 63, 64 | sylanbrc 698 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(#‘𝐹))–onto→dom 𝐸) |