| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem14.v |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
| 2 | | fourierdlem14.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | | fourierdlem14.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 4 | 3 | fourierdlem2 40326 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 5 | 2, 4 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 6 | 1, 5 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → (𝑉 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
| 7 | 6 | simpld 475 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ∈ (ℝ ↑𝑚
(0...𝑀))) |
| 8 | | elmapi 7879 |
. . . . . . . 8
⊢ (𝑉 ∈ (ℝ
↑𝑚 (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ) |
| 9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑉:(0...𝑀)⟶ℝ) |
| 10 | 9 | ffvelrnda 6359 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑉‘𝑖) ∈ ℝ) |
| 11 | | fourierdlem14.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 12 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ) |
| 13 | 10, 12 | resubcld 10458 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) |
| 14 | | fourierdlem14.q |
. . . . 5
⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
| 15 | 13, 14 | fmptd 6385 |
. . . 4
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 16 | | reex 10027 |
. . . . . 6
⊢ ℝ
∈ V |
| 17 | 16 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
| 18 | | ovex 6678 |
. . . . . 6
⊢
(0...𝑀) ∈
V |
| 19 | 18 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ V) |
| 20 | 17, 19 | elmapd 7871 |
. . . 4
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)) |
| 21 | 15, 20 | mpbird 247 |
. . 3
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑𝑚
(0...𝑀))) |
| 22 | 14 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋))) |
| 23 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑖 = 0 → (𝑉‘𝑖) = (𝑉‘0)) |
| 24 | 23 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑖 = 0 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘0) − 𝑋)) |
| 25 | 24 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘0) − 𝑋)) |
| 26 | | 0zd 11389 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℤ) |
| 27 | 2 | nnzd 11481 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 28 | 26, 27, 26 | 3jca 1242 |
. . . . . . . 8
⊢ (𝜑 → (0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 0
∈ ℤ)) |
| 29 | | 0le0 11110 |
. . . . . . . . 9
⊢ 0 ≤
0 |
| 30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 0) |
| 31 | | 0red 10041 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℝ) |
| 32 | 2 | nnred 11035 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 33 | 2 | nngt0d 11064 |
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝑀) |
| 34 | 31, 32, 33 | ltled 10185 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝑀) |
| 35 | 28, 30, 34 | jca32 558 |
. . . . . . 7
⊢ (𝜑 → ((0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 0
∈ ℤ) ∧ (0 ≤ 0 ∧ 0 ≤ 𝑀))) |
| 36 | | elfz2 12333 |
. . . . . . 7
⊢ (0 ∈
(0...𝑀) ↔ ((0 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 0 ∈ ℤ) ∧ (0 ≤ 0 ∧ 0 ≤ 𝑀))) |
| 37 | 35, 36 | sylibr 224 |
. . . . . 6
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 38 | 9, 37 | ffvelrnd 6360 |
. . . . . . 7
⊢ (𝜑 → (𝑉‘0) ∈ ℝ) |
| 39 | 38, 11 | resubcld 10458 |
. . . . . 6
⊢ (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ) |
| 40 | 22, 25, 37, 39 | fvmptd 6288 |
. . . . 5
⊢ (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋)) |
| 41 | 6 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 → (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))) |
| 42 | 41 | simpld 475 |
. . . . . . 7
⊢ (𝜑 → ((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋))) |
| 43 | 42 | simpld 475 |
. . . . . 6
⊢ (𝜑 → (𝑉‘0) = (𝐴 + 𝑋)) |
| 44 | 43 | oveq1d 6665 |
. . . . 5
⊢ (𝜑 → ((𝑉‘0) − 𝑋) = ((𝐴 + 𝑋) − 𝑋)) |
| 45 | | fourierdlem14.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 46 | 45 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 47 | 11 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 48 | 46, 47 | pncand 10393 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝑋) − 𝑋) = 𝐴) |
| 49 | 40, 44, 48 | 3eqtrd 2660 |
. . . 4
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
| 50 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑖 = 𝑀 → (𝑉‘𝑖) = (𝑉‘𝑀)) |
| 51 | 50 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑖 = 𝑀 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑀) − 𝑋)) |
| 52 | 51 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑀) − 𝑋)) |
| 53 | 26, 27, 27 | 3jca 1242 |
. . . . . . . 8
⊢ (𝜑 → (0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧
𝑀 ∈
ℤ)) |
| 54 | 32 | leidd 10594 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ≤ 𝑀) |
| 55 | 53, 34, 54 | jca32 558 |
. . . . . . 7
⊢ (𝜑 → ((0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧
𝑀 ∈ ℤ) ∧ (0
≤ 𝑀 ∧ 𝑀 ≤ 𝑀))) |
| 56 | | elfz2 12333 |
. . . . . . 7
⊢ (𝑀 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤
𝑀 ∧ 𝑀 ≤ 𝑀))) |
| 57 | 55, 56 | sylibr 224 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
| 58 | 9, 57 | ffvelrnd 6360 |
. . . . . . 7
⊢ (𝜑 → (𝑉‘𝑀) ∈ ℝ) |
| 59 | 58, 11 | resubcld 10458 |
. . . . . 6
⊢ (𝜑 → ((𝑉‘𝑀) − 𝑋) ∈ ℝ) |
| 60 | 22, 52, 57, 59 | fvmptd 6288 |
. . . . 5
⊢ (𝜑 → (𝑄‘𝑀) = ((𝑉‘𝑀) − 𝑋)) |
| 61 | 42 | simprd 479 |
. . . . . 6
⊢ (𝜑 → (𝑉‘𝑀) = (𝐵 + 𝑋)) |
| 62 | 61 | oveq1d 6665 |
. . . . 5
⊢ (𝜑 → ((𝑉‘𝑀) − 𝑋) = ((𝐵 + 𝑋) − 𝑋)) |
| 63 | | fourierdlem14.2 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 64 | 63 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 65 | 64, 47 | pncand 10393 |
. . . . 5
⊢ (𝜑 → ((𝐵 + 𝑋) − 𝑋) = 𝐵) |
| 66 | 60, 62, 65 | 3eqtrd 2660 |
. . . 4
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
| 67 | 49, 66 | jca 554 |
. . 3
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
| 68 | | elfzofz 12485 |
. . . . . . 7
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
| 69 | 68, 10 | sylan2 491 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ℝ) |
| 70 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ) |
| 71 | | fzofzp1 12565 |
. . . . . . . 8
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
| 72 | 71 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
| 73 | 70, 72 | ffvelrnd 6360 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
| 74 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
| 75 | 41 | simprd 479 |
. . . . . . 7
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
| 76 | 75 | r19.21bi 2932 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
| 77 | 69, 73, 74, 76 | ltsub1dd 10639 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) < ((𝑉‘(𝑖 + 1)) − 𝑋)) |
| 78 | 68 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 79 | 68, 13 | sylan2 491 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) |
| 80 | 14 | fvmpt2 6291 |
. . . . . 6
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑉‘𝑖) − 𝑋) ∈ ℝ) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
| 81 | 78, 79, 80 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
| 82 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑉‘𝑖) = (𝑉‘𝑗)) |
| 83 | 82 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑗) − 𝑋)) |
| 84 | 83 | cbvmptv 4750 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
| 85 | 14, 84 | eqtri 2644 |
. . . . . . 7
⊢ 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
| 86 | 85 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋))) |
| 87 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑗 = (𝑖 + 1) → (𝑉‘𝑗) = (𝑉‘(𝑖 + 1))) |
| 88 | 87 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑗 = (𝑖 + 1) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
| 89 | 88 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
| 90 | 73, 74 | resubcld 10458 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
| 91 | 86, 89, 72, 90 | fvmptd 6288 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
| 92 | 77, 81, 91 | 3brtr4d 4685 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 93 | 92 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 94 | 21, 67, 93 | jca32 558 |
. 2
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
| 95 | | fourierdlem14.o |
. . . 4
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 96 | 95 | fourierdlem2 40326 |
. . 3
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑂‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 97 | 2, 96 | syl 17 |
. 2
⊢ (𝜑 → (𝑄 ∈ (𝑂‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 98 | 94, 97 | mpbird 247 |
1
⊢ (𝜑 → 𝑄 ∈ (𝑂‘𝑀)) |