| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem15.3 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
| 2 | | fourierdlem15.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | | fourierdlem15.1 |
. . . . . . . 8
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 4 | 3 | fourierdlem2 40326 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 5 | 2, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 6 | 1, 5 | mpbid 222 |
. . . . 5
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
| 7 | 6 | simpld 475 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑𝑚
(0...𝑀))) |
| 8 | | reex 10027 |
. . . . . 6
⊢ ℝ
∈ V |
| 9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
| 10 | | ovex 6678 |
. . . . . 6
⊢
(0...𝑀) ∈
V |
| 11 | 10 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ V) |
| 12 | 9, 11 | elmapd 7871 |
. . . 4
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)) |
| 13 | 7, 12 | mpbid 222 |
. . 3
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 14 | | ffn 6045 |
. . 3
⊢ (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀)) |
| 15 | 13, 14 | syl 17 |
. 2
⊢ (𝜑 → 𝑄 Fn (0...𝑀)) |
| 16 | 6 | simprd 479 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
| 17 | 16 | simpld 475 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
| 18 | 17 | simpld 475 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
| 19 | | nnnn0 11299 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
| 20 | | nn0uz 11722 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
| 21 | 19, 20 | syl6eleq 2711 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
(ℤ≥‘0)) |
| 22 | 2, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
| 23 | | eluzfz1 12348 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
| 24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 25 | 13, 24 | ffvelrnd 6360 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
| 26 | 18, 25 | eqeltrrd 2702 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 27 | 26 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ∈ ℝ) |
| 28 | 17 | simprd 479 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
| 29 | | eluzfz2 12349 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
| 30 | 22, 29 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
| 31 | 13, 30 | ffvelrnd 6360 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℝ) |
| 32 | 28, 31 | eqeltrrd 2702 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 33 | 32 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐵 ∈ ℝ) |
| 34 | 13 | ffvelrnda 6359 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 35 | 18 | eqcomd 2628 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = (𝑄‘0)) |
| 36 | 35 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 = (𝑄‘0)) |
| 37 | | elfzuz 12338 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈
(ℤ≥‘0)) |
| 38 | 37 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑖 ∈
(ℤ≥‘0)) |
| 39 | 13 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑄:(0...𝑀)⟶ℝ) |
| 40 | | elfzle1 12344 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑖) → 0 ≤ 𝑗) |
| 41 | 40 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ≤ 𝑗) |
| 42 | | elfzelz 12342 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℤ) |
| 43 | 42 | zred 11482 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℝ) |
| 44 | 43 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℝ) |
| 45 | | elfzelz 12342 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ) |
| 46 | 45 | zred 11482 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ) |
| 47 | 46 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖 ∈ ℝ) |
| 48 | | elfzel2 12340 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℤ) |
| 49 | 48 | zred 11482 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 𝑀 ∈ ℝ) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℝ) |
| 51 | | elfzle2 12345 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ≤ 𝑖) |
| 52 | 51 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ≤ 𝑖) |
| 53 | | elfzle2 12345 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ≤ 𝑀) |
| 54 | 53 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑖 ≤ 𝑀) |
| 55 | 44, 47, 50, 52, 54 | letrd 10194 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ≤ 𝑀) |
| 56 | 42 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ ℤ) |
| 57 | | 0zd 11389 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 0 ∈ ℤ) |
| 58 | 48 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑀 ∈ ℤ) |
| 59 | | elfz 12332 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → (𝑗 ∈
(0...𝑀) ↔ (0 ≤
𝑗 ∧ 𝑗 ≤ 𝑀))) |
| 60 | 56, 57, 58, 59 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → (𝑗 ∈ (0...𝑀) ↔ (0 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀))) |
| 61 | 41, 55, 60 | mpbir2and 957 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀)) |
| 62 | 61 | adantll 750 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → 𝑗 ∈ (0...𝑀)) |
| 63 | 39, 62 | ffvelrnd 6360 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑖)) → (𝑄‘𝑗) ∈ ℝ) |
| 64 | | simpll 790 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝜑) |
| 65 | | elfzle1 12344 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 0 ≤ 𝑗) |
| 66 | 65 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ≤ 𝑗) |
| 67 | | elfzelz 12342 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℤ) |
| 68 | 67 | zred 11482 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ∈ ℝ) |
| 69 | 68 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℝ) |
| 70 | 46 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖 ∈ ℝ) |
| 71 | 49 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℝ) |
| 72 | | peano2rem 10348 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℝ → (𝑖 − 1) ∈
ℝ) |
| 73 | 70, 72 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) ∈ ℝ) |
| 74 | | elfzle2 12345 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...(𝑖 − 1)) → 𝑗 ≤ (𝑖 − 1)) |
| 75 | 74 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ≤ (𝑖 − 1)) |
| 76 | 70 | ltm1d 10956 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑖 − 1) < 𝑖) |
| 77 | 69, 73, 70, 75, 76 | lelttrd 10195 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑖) |
| 78 | 53 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑖 ≤ 𝑀) |
| 79 | 69, 70, 71, 77, 78 | ltletrd 10197 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 < 𝑀) |
| 80 | 67 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ ℤ) |
| 81 | | 0zd 11389 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 0 ∈
ℤ) |
| 82 | 48 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑀 ∈ ℤ) |
| 83 | | elfzo 12472 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → (𝑗 ∈
(0..^𝑀) ↔ (0 ≤
𝑗 ∧ 𝑗 < 𝑀))) |
| 84 | 80, 81, 82, 83 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗 ∧ 𝑗 < 𝑀))) |
| 85 | 66, 79, 84 | mpbir2and 957 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀)) |
| 86 | 85 | adantll 750 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → 𝑗 ∈ (0..^𝑀)) |
| 87 | 13 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 88 | | elfzofz 12485 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀)) |
| 89 | 88 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 90 | 87, 89 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
| 91 | | fzofzp1 12565 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀)) |
| 92 | 91 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀)) |
| 93 | 87, 92 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ) |
| 94 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀))) |
| 95 | 94 | anbi2d 740 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑗 ∈ (0..^𝑀)))) |
| 96 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
| 97 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1)) |
| 98 | 97 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1))) |
| 99 | 96, 98 | breq12d 4666 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘𝑗) < (𝑄‘(𝑗 + 1)))) |
| 100 | 95, 99 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))))) |
| 101 | 16 | simprd 479 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 102 | 101 | r19.21bi 2932 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 103 | 100, 102 | chvarv 2263 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
| 104 | 90, 93, 103 | ltled 10185 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) ≤ (𝑄‘(𝑗 + 1))) |
| 105 | 64, 86, 104 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...(𝑖 − 1))) → (𝑄‘𝑗) ≤ (𝑄‘(𝑗 + 1))) |
| 106 | 38, 63, 105 | monoord 12831 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘0) ≤ (𝑄‘𝑖)) |
| 107 | 36, 106 | eqbrtrd 4675 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝐴 ≤ (𝑄‘𝑖)) |
| 108 | | elfzuz3 12339 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑀) → 𝑀 ∈ (ℤ≥‘𝑖)) |
| 109 | 108 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑀 ∈ (ℤ≥‘𝑖)) |
| 110 | 13 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 111 | | fz0fzelfz0 12445 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 112 | 111 | adantll 750 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 113 | 110, 112 | ffvelrnd 6360 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
| 114 | 13 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ) |
| 115 | | 0red 10041 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈
ℝ) |
| 116 | 46 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖 ∈ ℝ) |
| 117 | | elfzelz 12342 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℤ) |
| 118 | 117 | zred 11482 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ∈ ℝ) |
| 119 | 118 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ) |
| 120 | | elfzle1 12344 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0...𝑀) → 0 ≤ 𝑖) |
| 121 | 120 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑖) |
| 122 | | elfzle1 12344 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑖 ≤ 𝑗) |
| 123 | 122 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑖 ≤ 𝑗) |
| 124 | 115, 116,
119, 121, 123 | letrd 10194 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (0...𝑀) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗) |
| 125 | 124 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ 𝑗) |
| 126 | 118 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ) |
| 127 | 2 | nnred 11035 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 128 | 127 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℝ) |
| 129 | | 1red 10055 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈
ℝ) |
| 130 | 128, 129 | resubcld 10458 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ) |
| 131 | | elfzle2 12345 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑖...(𝑀 − 1)) → 𝑗 ≤ (𝑀 − 1)) |
| 132 | 131 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ (𝑀 − 1)) |
| 133 | 128 | ltm1d 10956 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑀 − 1) < 𝑀) |
| 134 | 126, 130,
128, 132, 133 | lelttrd 10195 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀) |
| 135 | 126, 128,
134 | ltled 10185 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ 𝑀) |
| 136 | 135 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ≤ 𝑀) |
| 137 | 117 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℤ) |
| 138 | | 0zd 11389 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ∈
ℤ) |
| 139 | 48 | ad2antlr 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℤ) |
| 140 | 137, 138,
139, 59 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 ∈ (0...𝑀) ↔ (0 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀))) |
| 141 | 125, 136,
140 | mpbir2and 957 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0...𝑀)) |
| 142 | 114, 141 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘𝑗) ∈ ℝ) |
| 143 | 118 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ ℝ) |
| 144 | | 1red 10055 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈
ℝ) |
| 145 | | 0le1 10551 |
. . . . . . . . . . . 12
⊢ 0 ≤
1 |
| 146 | 145 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤
1) |
| 147 | 143, 144,
125, 146 | addge0d 10603 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 0 ≤ (𝑗 + 1)) |
| 148 | 126, 130,
129, 132 | leadd1dd 10641 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ ((𝑀 − 1) + 1)) |
| 149 | 2 | nncnd 11036 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 150 | 149 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℂ) |
| 151 | | 1cnd 10056 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 1 ∈
ℂ) |
| 152 | 150, 151 | npcand 10396 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀) |
| 153 | 148, 152 | breqtrd 4679 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀) |
| 154 | 153 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ≤ 𝑀) |
| 155 | 137 | peano2zd 11485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ ℤ) |
| 156 | | elfz 12332 |
. . . . . . . . . . 11
⊢ (((𝑗 + 1) ∈ ℤ ∧ 0
∈ ℤ ∧ 𝑀
∈ ℤ) → ((𝑗
+ 1) ∈ (0...𝑀) ↔
(0 ≤ (𝑗 + 1) ∧
(𝑗 + 1) ≤ 𝑀))) |
| 157 | 155, 138,
139, 156 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → ((𝑗 + 1) ∈ (0...𝑀) ↔ (0 ≤ (𝑗 + 1) ∧ (𝑗 + 1) ≤ 𝑀))) |
| 158 | 147, 154,
157 | mpbir2and 957 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 + 1) ∈ (0...𝑀)) |
| 159 | 114, 158 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ) |
| 160 | | simpll 790 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝜑) |
| 161 | 134 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 < 𝑀) |
| 162 | 137, 138,
139, 83 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑗 ∈ (0..^𝑀) ↔ (0 ≤ 𝑗 ∧ 𝑗 < 𝑀))) |
| 163 | 125, 161,
162 | mpbir2and 957 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → 𝑗 ∈ (0..^𝑀)) |
| 164 | 160, 163,
103 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
| 165 | 142, 159,
164 | ltled 10185 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (𝑖...(𝑀 − 1))) → (𝑄‘𝑗) ≤ (𝑄‘(𝑗 + 1))) |
| 166 | 109, 113,
165 | monoord 12831 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ≤ (𝑄‘𝑀)) |
| 167 | 28 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑀) = 𝐵) |
| 168 | 166, 167 | breqtrd 4679 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ≤ 𝐵) |
| 169 | 27, 33, 34, 107, 168 | eliccd 39726 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ (𝐴[,]𝐵)) |
| 170 | 169 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑄‘𝑖) ∈ (𝐴[,]𝐵)) |
| 171 | | fnfvrnss 6390 |
. . 3
⊢ ((𝑄 Fn (0...𝑀) ∧ ∀𝑖 ∈ (0...𝑀)(𝑄‘𝑖) ∈ (𝐴[,]𝐵)) → ran 𝑄 ⊆ (𝐴[,]𝐵)) |
| 172 | 15, 170, 171 | syl2anc 693 |
. 2
⊢ (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵)) |
| 173 | | df-f 5892 |
. 2
⊢ (𝑄:(0...𝑀)⟶(𝐴[,]𝐵) ↔ (𝑄 Fn (0...𝑀) ∧ ran 𝑄 ⊆ (𝐴[,]𝐵))) |
| 174 | 15, 172, 173 | sylanbrc 698 |
1
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |