Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem85 Structured version   Visualization version   GIF version

Theorem fourierdlem85 40408
Description: Limit of the function 𝐺 at the lower bounds of the partition intervals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem85.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem85.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem85.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem85.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem85.w (𝜑𝑊 ∈ ℝ)
fourierdlem85.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem85.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem85.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem85.n (𝜑𝑁 ∈ ℝ)
fourierdlem85.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
fourierdlem85.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem85.m (𝜑𝑀 ∈ ℕ)
fourierdlem85.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem85.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem85.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem85.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem85.i 𝐼 = (ℝ D 𝐹)
fourierdlem85.ifn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
fourierdlem85.e (𝜑𝐸 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem85.a 𝐴 = ((if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖)))
Assertion
Ref Expression
fourierdlem85 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
Distinct variable groups:   𝐸,𝑠   𝐹,𝑠   𝐻,𝑠   𝐾,𝑠   𝑖,𝑀,𝑚,𝑝   𝑀,𝑠,𝑖   𝑁,𝑠   𝑄,𝑖,𝑝   𝑄,𝑠   𝑅,𝑠   𝑆,𝑠   𝑖,𝑉,𝑝   𝑉,𝑠   𝑊,𝑠   𝑖,𝑋,𝑚,𝑝   𝑋,𝑠   𝑌,𝑠   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖,𝑚,𝑠,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝑆(𝑖,𝑚,𝑝)   𝑈(𝑖,𝑚,𝑠,𝑝)   𝐸(𝑖,𝑚,𝑝)   𝐹(𝑖,𝑚,𝑝)   𝐺(𝑖,𝑚,𝑠,𝑝)   𝐻(𝑖,𝑚,𝑝)   𝐼(𝑖,𝑚,𝑠,𝑝)   𝐾(𝑖,𝑚,𝑝)   𝑁(𝑖,𝑚,𝑝)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚)   𝑊(𝑖,𝑚,𝑝)   𝑌(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem85
StepHypRef Expression
1 fourierdlem85.a . . 3 𝐴 = ((if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖)))
2 eqid 2622 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠))
3 eqid 2622 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠))
4 eqid 2622 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠)))
5 pire 24210 . . . . . . . . . . 11 π ∈ ℝ
65renegcli 10342 . . . . . . . . . 10 -π ∈ ℝ
76rexri 10097 . . . . . . . . 9 -π ∈ ℝ*
87a1i 11 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -π ∈ ℝ*)
95rexri 10097 . . . . . . . . 9 π ∈ ℝ*
109a1i 11 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → π ∈ ℝ*)
11 fourierdlem85.o . . . . . . . . . . 11 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
12 fourierdlem85.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
135a1i 11 . . . . . . . . . . . . 13 (𝜑 → π ∈ ℝ)
1413renegcld 10457 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
15 fourierdlem85.v . . . . . . . . . . . . . . . 16 (𝜑𝑉 ∈ (𝑃𝑀))
16 fourierdlem85.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1716fourierdlem2 40326 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
1812, 17syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
1915, 18mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
2019simpld 475 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)))
21 elmapi 7879 . . . . . . . . . . . . . 14 (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
22 frn 6053 . . . . . . . . . . . . . 14 (𝑉:(0...𝑀)⟶ℝ → ran 𝑉 ⊆ ℝ)
2320, 21, 223syl 18 . . . . . . . . . . . . 13 (𝜑 → ran 𝑉 ⊆ ℝ)
24 fourierdlem85.x . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ran 𝑉)
2523, 24sseldd 3604 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
26 fourierdlem85.q . . . . . . . . . . . 12 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
2714, 13, 25, 16, 11, 12, 15, 26fourierdlem14 40338 . . . . . . . . . . 11 (𝜑𝑄 ∈ (𝑂𝑀))
2811, 12, 27fourierdlem15 40339 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
2928adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
3029adantr 481 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π))
31 simplr 792 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
328, 10, 30, 31fourierdlem8 40332 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
33 ioossicc 12259 . . . . . . . . 9 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
3433sseli 3599 . . . . . . . 8 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
3534adantl 482 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
3632, 35sseldd 3604 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (-π[,]π))
37 fourierdlem85.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
38 ioossre 12235 . . . . . . . . . . . . . 14 (𝑋(,)+∞) ⊆ ℝ
3938a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
4037, 39fssresd 6071 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
41 ax-resscn 9993 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
4239, 41syl6ss 3615 . . . . . . . . . . . 12 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
43 eqid 2622 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
44 pnfxr 10092 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → +∞ ∈ ℝ*)
4625ltpnfd 11955 . . . . . . . . . . . . 13 (𝜑𝑋 < +∞)
4743, 45, 25, 46lptioo1cn 39878 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
48 fourierdlem85.y . . . . . . . . . . . 12 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
4940, 42, 47, 48limcrecl 39861 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ)
50 fourierdlem85.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ℝ)
51 fourierdlem85.h . . . . . . . . . . 11 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
5237, 25, 49, 50, 51fourierdlem9 40333 . . . . . . . . . 10 (𝜑𝐻:(-π[,]π)⟶ℝ)
5341a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
5452, 53fssd 6057 . . . . . . . . 9 (𝜑𝐻:(-π[,]π)⟶ℂ)
5554ad2antrr 762 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐻:(-π[,]π)⟶ℂ)
5655, 36ffvelrnd 6360 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) ∈ ℂ)
57 fourierdlem85.k . . . . . . . . . . 11 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
5857fourierdlem43 40367 . . . . . . . . . 10 𝐾:(-π[,]π)⟶ℝ
5958a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐾:(-π[,]π)⟶ℝ)
6059, 36ffvelrnd 6360 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾𝑠) ∈ ℝ)
6160recnd 10068 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾𝑠) ∈ ℂ)
6256, 61mulcld 10060 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℂ)
63 fourierdlem85.u . . . . . . 7 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
6463fvmpt2 6291 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℂ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6536, 62, 64syl2anc 693 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6665, 62eqeltrd 2701 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) ∈ ℂ)
67 fourierdlem85.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
68 fourierdlem85.s . . . . . . . . . 10 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
6967, 68fourierdlem18 40342 . . . . . . . . 9 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
70 cncff 22696 . . . . . . . . 9 (𝑆 ∈ ((-π[,]π)–cn→ℝ) → 𝑆:(-π[,]π)⟶ℝ)
7169, 70syl 17 . . . . . . . 8 (𝜑𝑆:(-π[,]π)⟶ℝ)
7271adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑆:(-π[,]π)⟶ℝ)
7372adantr 481 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑆:(-π[,]π)⟶ℝ)
7473, 36ffvelrnd 6360 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆𝑠) ∈ ℝ)
7574recnd 10068 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆𝑠) ∈ ℂ)
76 eqid 2622 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠))
77 eqid 2622 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠))
78 eqid 2622 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠)))
79 fourierdlem85.r . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
80 fourierdlem85.i . . . . . . . 8 𝐼 = (ℝ D 𝐹)
81 fourierdlem85.ifn . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
82 fourierdlem85.e . . . . . . . 8 (𝜑𝐸 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
83 eqid 2622 . . . . . . . 8 if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
8425, 16, 37, 24, 48, 50, 51, 12, 15, 79, 26, 11, 80, 81, 82, 83fourierdlem75 40398 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
8552adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻:(-π[,]π)⟶ℝ)
867a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
879a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
88 simpr 477 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
8986, 87, 29, 88fourierdlem8 40332 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
9033, 89syl5ss 3614 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
9185, 90feqresmpt 6250 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)))
9291oveq1d 6665 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄𝑖)))
9384, 92eleqtrd 2703 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄𝑖)))
94 limcresi 23649 . . . . . . . 8 (𝐾 lim (𝑄𝑖)) ⊆ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
95 ssid 3624 . . . . . . . . . . . 12 ℂ ⊆ ℂ
96 cncfss 22702 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
9741, 95, 96mp2an 708 . . . . . . . . . . 11 ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ)
9857fourierdlem62 40385 . . . . . . . . . . 11 𝐾 ∈ ((-π[,]π)–cn→ℝ)
9997, 98sselii 3600 . . . . . . . . . 10 𝐾 ∈ ((-π[,]π)–cn→ℂ)
10099a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐾 ∈ ((-π[,]π)–cn→ℂ))
101 elfzofz 12485 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
102101adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
10329, 102ffvelrnd 6360 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
104100, 103cnlimci 23653 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ (𝐾 lim (𝑄𝑖)))
10594, 104sseldi 3601 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
106 cncff 22696 . . . . . . . . . 10 (𝐾 ∈ ((-π[,]π)–cn→ℂ) → 𝐾:(-π[,]π)⟶ℂ)
10799, 106mp1i 13 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐾:(-π[,]π)⟶ℂ)
108107, 90feqresmpt 6250 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)))
109108oveq1d 6665 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄𝑖)))
110105, 109eleqtrd 2703 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄𝑖)))
11176, 77, 78, 56, 61, 93, 110mullimc 39848 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄𝑖)))
11265mpteq2dva 4744 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))))
113112oveq1d 6665 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄𝑖)))
114111, 113eleqtrrd 2704 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄𝑖)))
115 limcresi 23649 . . . . . 6 (𝑆 lim (𝑄𝑖)) ⊆ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
11669adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑆 ∈ ((-π[,]π)–cn→ℝ))
117116, 103cnlimci 23653 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ (𝑆 lim (𝑄𝑖)))
118115, 117sseldi 3601 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
11972, 90feqresmpt 6250 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)))
120119oveq1d 6665 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄𝑖)))
121118, 120eleqtrd 2703 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄𝑖)))
1222, 3, 4, 66, 75, 114, 121mullimc 39848 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)))
1231, 122syl5eqel 2705 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)))
124 fourierdlem85.g . . . . 5 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
125124reseq1i 5392 . . . 4 (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
12690resmptd 5452 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))))
127125, 126syl5req 2669 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
128127oveq1d 6665 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
129123, 128eleqtrd 2703 1 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  (,)cioo 12175  [,]cicc 12178  ...cfz 12326  ..^cfzo 12465  sincsin 14794  πcpi 14797  TopOpenctopn 16082  fldccnfld 19746  cnccncf 22679   lim climc 23626   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator