Step | Hyp | Ref
| Expression |
1 | | frgrncvvdeq.ny |
. . 3
⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
2 | 1 | ineq2i 3811 |
. 2
⊢ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) |
3 | | frgrncvvdeq.f |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
4 | 3 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐺 ∈ FriendGraph ) |
5 | | frgrncvvdeq.nx |
. . . . . . . 8
⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
6 | 5 | eleq2i 2693 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 ↔ 𝑥 ∈ (𝐺 NeighbVtx 𝑋)) |
7 | | frgrusgr 27124 |
. . . . . . . 8
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph
) |
8 | | frgrncvvdeq.v1 |
. . . . . . . . . 10
⊢ 𝑉 = (Vtx‘𝐺) |
9 | 8 | nbgrisvtx 26255 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ (𝐺 NeighbVtx 𝑋)) → 𝑥 ∈ 𝑉) |
10 | 9 | ex 450 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥 ∈ 𝑉)) |
11 | 3, 7, 10 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥 ∈ 𝑉)) |
12 | 6, 11 | syl5bi 232 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐷 → 𝑥 ∈ 𝑉)) |
13 | 12 | imp 445 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝑉) |
14 | | frgrncvvdeq.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
15 | 14 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑌 ∈ 𝑉) |
16 | | frgrncvvdeq.xy |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∉ 𝐷) |
17 | | elnelne2 2908 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑌 ∉ 𝐷) → 𝑥 ≠ 𝑌) |
18 | 16, 17 | sylan2 491 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐷 ∧ 𝜑) → 𝑥 ≠ 𝑌) |
19 | 18 | ancoms 469 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ≠ 𝑌) |
20 | 13, 15, 19 | 3jca 1242 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ≠ 𝑌)) |
21 | | frgrncvvdeq.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
22 | 8, 21 | frcond3 27133 |
. . . 4
⊢ (𝐺 ∈ FriendGraph →
((𝑥 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ≠ 𝑌) → ∃𝑛 ∈ 𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛})) |
23 | 4, 20, 22 | sylc 65 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃𝑛 ∈ 𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛}) |
24 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑛 ∈ V |
25 | | elinsn 4245 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ V ∧ ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛}) → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌))) |
26 | 24, 25 | mpan 706 |
. . . . . . . . 9
⊢ (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌))) |
27 | 21 | nbusgreledg 26249 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑛, 𝑥} ∈ 𝐸)) |
28 | | prcom 4267 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑛, 𝑥} = {𝑥, 𝑛} |
29 | 28 | eleq1i 2692 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑛, 𝑥} ∈ 𝐸 ↔ {𝑥, 𝑛} ∈ 𝐸) |
30 | 27, 29 | syl6bb 276 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑥, 𝑛} ∈ 𝐸)) |
31 | 30 | biimpd 219 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸)) |
32 | 3, 7, 31 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸)) |
33 | 32 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸)) |
34 | 33 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, 𝑛} ∈ 𝐸)) |
35 | 34 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, 𝑛} ∈ 𝐸)) |
36 | 35 | imp 445 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑 ∧ 𝑥 ∈ 𝐷)) → {𝑥, 𝑛} ∈ 𝐸) |
37 | 1 | eqcomi 2631 |
. . . . . . . . . . . . . 14
⊢ (𝐺 NeighbVtx 𝑌) = 𝑁 |
38 | 37 | eleq2i 2693 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑛 ∈ 𝑁) |
39 | 38 | biimpi 206 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛 ∈ 𝑁) |
40 | 39 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) → 𝑛 ∈ 𝑁) |
41 | | frgrncvvdeq.x |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
42 | | frgrncvvdeq.ne |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ≠ 𝑌) |
43 | | frgrncvvdeq.a |
. . . . . . . . . . . 12
⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
44 | 8, 21, 5, 1, 41, 14, 42, 16, 3, 43 | frgrncvvdeqlem2 27164 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃!𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸) |
45 | | preq2 4269 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑛 → {𝑥, 𝑦} = {𝑥, 𝑛}) |
46 | 45 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑛 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑥, 𝑛} ∈ 𝐸)) |
47 | 46 | riota2 6633 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ 𝑁 ∧ ∃!𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸) → ({𝑥, 𝑛} ∈ 𝐸 ↔ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛)) |
48 | 40, 44, 47 | syl2an 494 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑 ∧ 𝑥 ∈ 𝐷)) → ({𝑥, 𝑛} ∈ 𝐸 ↔ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛)) |
49 | 36, 48 | mpbid 222 |
. . . . . . . . 9
⊢ (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑 ∧ 𝑥 ∈ 𝐷)) → (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛) |
50 | 26, 49 | sylan 488 |
. . . . . . . 8
⊢ ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑 ∧ 𝑥 ∈ 𝐷)) → (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛) |
51 | 50 | eqcomd 2628 |
. . . . . . 7
⊢ ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑 ∧ 𝑥 ∈ 𝐷)) → 𝑛 = (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
52 | 51 | sneqd 4189 |
. . . . . 6
⊢ ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑 ∧ 𝑥 ∈ 𝐷)) → {𝑛} = {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)}) |
53 | | eqeq1 2626 |
. . . . . . 7
⊢ (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)} ↔ {𝑛} = {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)})) |
54 | 53 | adantr 481 |
. . . . . 6
⊢ ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑 ∧ 𝑥 ∈ 𝐷)) → (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)} ↔ {𝑛} = {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)})) |
55 | 52, 54 | mpbird 247 |
. . . . 5
⊢ ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑 ∧ 𝑥 ∈ 𝐷)) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)}) |
56 | 55 | ex 450 |
. . . 4
⊢ (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)})) |
57 | 56 | rexlimivw 3029 |
. . 3
⊢
(∃𝑛 ∈
𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)})) |
58 | 23, 57 | mpcom 38 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)}) |
59 | 2, 58 | syl5req 2669 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |