MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem7 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem7 16801
Description: Lemma 7 for funcsetcestrc 16804. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦𝑚 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem7 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrclem7
StepHypRef Expression
1 funcsetcestrc.s . . . . 5 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . . . 5 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . . . 5 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . . . 5 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . . . 5 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrc.g . . . . 5 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦𝑚 𝑥))))
71, 2, 3, 4, 5, 6funcsetcestrclem5 16799 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑋𝐶)) → (𝑋𝐺𝑋) = ( I ↾ (𝑋𝑚 𝑋)))
87anabsan2 863 . . 3 ((𝜑𝑋𝐶) → (𝑋𝐺𝑋) = ( I ↾ (𝑋𝑚 𝑋)))
9 eqid 2622 . . . 4 (Id‘𝑆) = (Id‘𝑆)
104adantr 481 . . . 4 ((𝜑𝑋𝐶) → 𝑈 ∈ WUni)
111, 4setcbas 16728 . . . . . . 7 (𝜑𝑈 = (Base‘𝑆))
1211, 2syl6reqr 2675 . . . . . 6 (𝜑𝐶 = 𝑈)
1312eleq2d 2687 . . . . 5 (𝜑 → (𝑋𝐶𝑋𝑈))
1413biimpa 501 . . . 4 ((𝜑𝑋𝐶) → 𝑋𝑈)
151, 9, 10, 14setcid 16736 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝑆)‘𝑋) = ( I ↾ 𝑋))
168, 15fveq12d 6197 . 2 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = (( I ↾ (𝑋𝑚 𝑋))‘( I ↾ 𝑋)))
17 f1oi 6174 . . . . . 6 ( I ↾ 𝑋):𝑋1-1-onto𝑋
18 f1of 6137 . . . . . 6 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
1917, 18ax-mp 5 . . . . 5 ( I ↾ 𝑋):𝑋𝑋
20 simpr 477 . . . . . 6 ((𝜑𝑋𝐶) → 𝑋𝐶)
21 elmapg 7870 . . . . . 6 ((𝑋𝐶𝑋𝐶) → (( I ↾ 𝑋) ∈ (𝑋𝑚 𝑋) ↔ ( I ↾ 𝑋):𝑋𝑋))
2220, 21sylancom 701 . . . . 5 ((𝜑𝑋𝐶) → (( I ↾ 𝑋) ∈ (𝑋𝑚 𝑋) ↔ ( I ↾ 𝑋):𝑋𝑋))
2319, 22mpbiri 248 . . . 4 ((𝜑𝑋𝐶) → ( I ↾ 𝑋) ∈ (𝑋𝑚 𝑋))
24 fvresi 6439 . . . 4 (( I ↾ 𝑋) ∈ (𝑋𝑚 𝑋) → (( I ↾ (𝑋𝑚 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋))
2523, 24syl 17 . . 3 ((𝜑𝑋𝐶) → (( I ↾ (𝑋𝑚 𝑋))‘( I ↾ 𝑋)) = ( I ↾ 𝑋))
26 eqid 2622 . . . . . 6 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
27261strbas 15980 . . . . 5 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2820, 27syl 17 . . . 4 ((𝜑𝑋𝐶) → 𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
2928reseq2d 5396 . . 3 ((𝜑𝑋𝐶) → ( I ↾ 𝑋) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
3025, 29eqtrd 2656 . 2 ((𝜑𝑋𝐶) → (( I ↾ (𝑋𝑚 𝑋))‘( I ↾ 𝑋)) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
311, 2, 3funcsetcestrclem1 16794 . . . 4 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
3231fveq2d 6195 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝐸)‘(𝐹𝑋)) = ((Id‘𝐸)‘{⟨(Base‘ndx), 𝑋⟩}))
33 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
34 eqid 2622 . . . 4 (Id‘𝐸) = (Id‘𝐸)
351, 2, 4, 5setc1strwun 16793 . . . 4 ((𝜑𝑋𝐶) → {⟨(Base‘ndx), 𝑋⟩} ∈ 𝑈)
3633, 34, 10, 35estrcid 16774 . . 3 ((𝜑𝑋𝐶) → ((Id‘𝐸)‘{⟨(Base‘ndx), 𝑋⟩}) = ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})))
3732, 36eqtr2d 2657 . 2 ((𝜑𝑋𝐶) → ( I ↾ (Base‘{⟨(Base‘ndx), 𝑋⟩})) = ((Id‘𝐸)‘(𝐹𝑋)))
3816, 30, 373eqtrd 2660 1 ((𝜑𝑋𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {csn 4177  cop 4183  cmpt 4729   I cid 5023  cres 5116  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  𝑚 cmap 7857  WUnicwun 9522  ndxcnx 15854  Basecbs 15857  Idccid 16326  SetCatcsetc 16725  ExtStrCatcestrc 16762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wun 9524  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-ltp 9807  df-enr 9877  df-nr 9878  df-c 9942  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-setc 16726  df-estrc 16763
This theorem is referenced by:  funcsetcestrc  16804
  Copyright terms: Public domain W3C validator