| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzofzim | Structured version Visualization version Unicode version | ||
| Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| Ref | Expression |
|---|---|
| fzofzim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 12431 |
. . . 4
| |
| 2 | simpl1 1064 |
. . . . . 6
| |
| 3 | necom 2847 |
. . . . . . . . 9
| |
| 4 | nn0re 11301 |
. . . . . . . . . . . . 13
| |
| 5 | nn0re 11301 |
. . . . . . . . . . . . 13
| |
| 6 | ltlen 10138 |
. . . . . . . . . . . . 13
| |
| 7 | 4, 5, 6 | syl2an 494 |
. . . . . . . . . . . 12
|
| 8 | 7 | bicomd 213 |
. . . . . . . . . . 11
|
| 9 | elnn0z 11390 |
. . . . . . . . . . . . 13
| |
| 10 | 0red 10041 |
. . . . . . . . . . . . . . . . 17
| |
| 11 | zre 11381 |
. . . . . . . . . . . . . . . . . 18
| |
| 12 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . 17
|
| 13 | 5 | adantl 482 |
. . . . . . . . . . . . . . . . 17
|
| 14 | lelttr 10128 |
. . . . . . . . . . . . . . . . 17
| |
| 15 | 10, 12, 13, 14 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
|
| 16 | nn0z 11400 |
. . . . . . . . . . . . . . . . . 18
| |
| 17 | elnnz 11387 |
. . . . . . . . . . . . . . . . . . 19
| |
| 18 | 17 | simplbi2 655 |
. . . . . . . . . . . . . . . . . 18
|
| 19 | 16, 18 | syl 17 |
. . . . . . . . . . . . . . . . 17
|
| 20 | 19 | adantl 482 |
. . . . . . . . . . . . . . . 16
|
| 21 | 15, 20 | syld 47 |
. . . . . . . . . . . . . . 15
|
| 22 | 21 | expd 452 |
. . . . . . . . . . . . . 14
|
| 23 | 22 | impancom 456 |
. . . . . . . . . . . . 13
|
| 24 | 9, 23 | sylbi 207 |
. . . . . . . . . . . 12
|
| 25 | 24 | imp 445 |
. . . . . . . . . . 11
|
| 26 | 8, 25 | sylbid 230 |
. . . . . . . . . 10
|
| 27 | 26 | expd 452 |
. . . . . . . . 9
|
| 28 | 3, 27 | syl7bi 245 |
. . . . . . . 8
|
| 29 | 28 | 3impia 1261 |
. . . . . . 7
|
| 30 | 29 | imp 445 |
. . . . . 6
|
| 31 | 8 | biimpd 219 |
. . . . . . . . . 10
|
| 32 | 31 | exp4b 632 |
. . . . . . . . 9
|
| 33 | 32 | 3imp 1256 |
. . . . . . . 8
|
| 34 | 3, 33 | syl5bi 232 |
. . . . . . 7
|
| 35 | 34 | imp 445 |
. . . . . 6
|
| 36 | 2, 30, 35 | 3jca 1242 |
. . . . 5
|
| 37 | 36 | ex 450 |
. . . 4
|
| 38 | 1, 37 | sylbi 207 |
. . 3
|
| 39 | 38 | impcom 446 |
. 2
|
| 40 | elfzo0 12508 |
. 2
| |
| 41 | 39, 40 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 |
| This theorem is referenced by: cshwshashlem1 15802 clwwisshclwwsn 26929 |
| Copyright terms: Public domain | W3C validator |