MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzomaxdiflem Structured version   Visualization version   GIF version

Theorem fzomaxdiflem 14082
Description: Lemma for fzomaxdif 14083. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzomaxdiflem (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))

Proof of Theorem fzomaxdiflem
StepHypRef Expression
1 elfzoelz 12470 . . . . . . 7 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ)
21adantl 482 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 ∈ ℤ)
3 elfzoelz 12470 . . . . . . 7 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ)
43adantr 481 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐴 ∈ ℤ)
52, 4zsubcld 11487 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ∈ ℤ)
65zred 11482 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ∈ ℝ)
76adantr 481 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (𝐵𝐴) ∈ ℝ)
82zred 11482 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 ∈ ℝ)
94zred 11482 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐴 ∈ ℝ)
108, 9subge0d 10617 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (0 ≤ (𝐵𝐴) ↔ 𝐴𝐵))
1110biimpar 502 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → 0 ≤ (𝐵𝐴))
12 absid 14036 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 0 ≤ (𝐵𝐴)) → (abs‘(𝐵𝐴)) = (𝐵𝐴))
137, 11, 12syl2anc 693 . 2 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) = (𝐵𝐴))
14 elfzoel1 12468 . . . . . . . 8 (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ)
1514adantl 482 . . . . . . 7 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶 ∈ ℤ)
1615zred 11482 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶 ∈ ℝ)
178, 16resubcld 10458 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐶) ∈ ℝ)
18 elfzoel2 12469 . . . . . . . 8 (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ)
1918adantl 482 . . . . . . 7 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐷 ∈ ℤ)
2019, 15zsubcld 11487 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐷𝐶) ∈ ℤ)
2120zred 11482 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐷𝐶) ∈ ℝ)
22 elfzole1 12478 . . . . . . 7 (𝐴 ∈ (𝐶..^𝐷) → 𝐶𝐴)
2322adantr 481 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶𝐴)
2416, 9, 8, 23lesub2dd 10644 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ≤ (𝐵𝐶))
2519zred 11482 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐷 ∈ ℝ)
26 elfzolt2 12479 . . . . . . 7 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 < 𝐷)
2726adantl 482 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 < 𝐷)
288, 25, 16, 27ltsub1dd 10639 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐶) < (𝐷𝐶))
296, 17, 21, 24, 28lelttrd 10195 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) < (𝐷𝐶))
3029adantr 481 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (𝐵𝐴) < (𝐷𝐶))
31 0zd 11389 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 0 ∈ ℤ)
32 elfzo 12472 . . . . 5 (((𝐵𝐴) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝐷𝐶) ∈ ℤ) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
335, 31, 20, 32syl3anc 1326 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
3433adantr 481 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
3511, 30, 34mpbir2and 957 . 2 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (𝐵𝐴) ∈ (0..^(𝐷𝐶)))
3613, 35eqeltrd 2701 1 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936   < clt 10074  cle 10075  cmin 10266  cz 11377  ..^cfzo 12465  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  fzomaxdif  14083
  Copyright terms: Public domain W3C validator