![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absid | Structured version Visualization version GIF version |
Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
absid | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 10068 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ) |
3 | absval 13978 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
5 | 1 | cjred 13966 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∗‘𝐴) = 𝐴) |
6 | 5 | oveq2d 6666 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴 · 𝐴)) |
7 | 2 | sqvald 13005 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴)) |
8 | 6, 7 | eqtr4d 2659 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴↑2)) |
9 | 8 | fveq2d 6195 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · (∗‘𝐴))) = (√‘(𝐴↑2))) |
10 | sqrtsq 14010 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴) | |
11 | 4, 9, 10 | 3eqtrd 2660 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 · cmul 9941 ≤ cle 10075 2c2 11070 ↑cexp 12860 ∗ccj 13836 √csqrt 13973 abscabs 13974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 |
This theorem is referenced by: abs1 14037 absnid 14038 leabs 14039 absor 14040 sqabs 14047 max0add 14050 absidm 14063 abssubge0 14067 fzomaxdiflem 14082 absidi 14117 absidd 14161 o1fsum 14545 geo2lim 14606 geoihalfsum 14614 ege2le3 14820 eirrlem 14932 rpnnen2lem3 14945 rpnnen2lem9 14951 6gcd4e2 15255 lcmgcdnn 15324 lcmfun 15358 lcmfass 15359 zringndrg 19838 ncvsge0 22953 iscmet3lem3 23088 minveclem2 23197 mbfi1fseqlem6 23487 dvfsumrlim 23794 aaliou3lem3 24099 pserulm 24176 pige3 24269 efif1olem4 24291 cxpcn3lem 24488 log2cnv 24671 log2tlbnd 24672 cxplim 24698 cxploglim2 24705 divsqrtsumo1 24710 fsumharmonic 24738 zetacvg 24741 logfacrlim 24949 logexprlim 24950 dchrmusum2 25183 dchrvmasumlem3 25188 dchrisum0lem1 25205 dchrisum0lem2a 25206 dchrisum0lem2 25207 mudivsum 25219 mulogsumlem 25220 log2sumbnd 25233 selberglem2 25235 selberg3lem1 25246 pntpbnd2 25276 pntibndlem2 25280 pntlemn 25289 pntlemj 25292 pntlemo 25296 ex-abs 27312 ex-gcd 27314 nvsge0 27519 nmoub2i 27629 minvecolem2 27731 subfacval3 31171 knoppndvlem14 32516 poimir 33442 ftc1anclem5 33489 oddcomabszz 37509 fourierdlem68 40391 |
Copyright terms: Public domain | W3C validator |