![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subge0d | Structured version Visualization version GIF version |
Description: Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
subge0d | ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | subge0 10541 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
4 | 1, 2, 3 | syl2anc 693 | 1 ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 1990 class class class wbr 4653 (class class class)co 6650 ℝcr 9935 0cc0 9936 ≤ cle 10075 − cmin 10266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 |
This theorem is referenced by: ofsubge0 11019 uzsubsubfz 12363 modsubdir 12739 modsumfzodifsn 12743 serle 12856 discr 13001 bcval5 13105 fzomaxdiflem 14082 sqreulem 14099 amgm2 14109 climle 14370 rlimle 14378 iseralt 14415 fsumle 14531 cvgcmp 14548 binomrisefac 14773 smuval2 15204 pcz 15585 4sqlem15 15663 mndodconglem 17960 ipcau2 23033 pjthlem1 23208 ovolicc2lem4 23288 vitalilem2 23378 itg1lea 23479 dvlip 23756 dvge0 23769 dvle 23770 dvivthlem1 23771 dvfsumlem2 23790 dvfsumlem4 23792 loglesqrt 24499 emcllem6 24727 harmoniclbnd 24735 basellem9 24815 gausslemma2dlem0h 25088 lgseisenlem1 25100 vmadivsum 25171 rplogsumlem1 25173 dchrisumlem2 25179 rplogsum 25216 vmalogdivsum2 25227 selberg2lem 25239 logdivbnd 25245 pntpbnd2 25276 pntibndlem2 25280 pntlemg 25287 pntlemn 25289 ttgcontlem1 25765 brbtwn2 25785 axpaschlem 25820 axcontlem8 25851 crctcsh 26716 clwlkclwwlklem2a1 26893 clwlkclwwlklem2fv2 26897 pjhthlem1 28250 leop2 28983 pjssposi 29031 2sqmod 29648 fdvposle 30679 rddif2 32467 dnibndlem4 32471 broucube 33443 areacirclem2 33501 areacirclem4 33503 areacirclem5 33504 areacirc 33505 acongrep 37547 lptre2pt 39872 dvnmul 40158 dvnprodlem1 40161 dvnprodlem2 40162 stoweidlem1 40218 stoweidlem26 40243 stoweidlem62 40279 wallispilem4 40285 fourierdlem26 40350 fourierdlem42 40366 fourierdlem65 40388 fourierdlem75 40398 elaa2lem 40450 etransclem3 40454 etransclem7 40458 etransclem10 40461 etransclem20 40471 etransclem21 40472 etransclem22 40473 etransclem24 40475 etransclem27 40478 hoidmvlelem1 40809 nnpw2pmod 42377 |
Copyright terms: Public domain | W3C validator |