![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for gausslemma2d 25099. (Contributed by AV, 13-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
gausslemma2d.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
gausslemma2d.n | ⊢ 𝑁 = (𝐻 − 𝑀) |
Ref | Expression |
---|---|
gausslemma2dlem7 | ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2d.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | gausslemma2d.h | . . 3 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
3 | gausslemma2d.r | . . 3 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
4 | gausslemma2d.m | . . 3 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
5 | gausslemma2d.n | . . 3 ⊢ 𝑁 = (𝐻 − 𝑀) | |
6 | 1, 2, 3, 4, 5 | gausslemma2dlem6 25097 | . 2 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) |
7 | 1, 2 | gausslemma2dlem0b 25082 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
8 | 7 | nnnn0d 11351 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
9 | 8 | faccld 13071 | . . . . . . . . 9 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
10 | 9 | nncnd 11036 | . . . . . . . 8 ⊢ (𝜑 → (!‘𝐻) ∈ ℂ) |
11 | 10 | mulid2d 10058 | . . . . . . 7 ⊢ (𝜑 → (1 · (!‘𝐻)) = (!‘𝐻)) |
12 | 11 | eqcomd 2628 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) = (1 · (!‘𝐻))) |
13 | 12 | oveq1d 6665 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((1 · (!‘𝐻)) mod 𝑃)) |
14 | 13 | eqeq1d 2624 | . . . 4 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ ((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))) |
15 | 1zzd 11408 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
16 | neg1z 11413 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
17 | 1, 4, 2, 5 | gausslemma2dlem0h 25088 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
18 | zexpcl 12875 | . . . . . . 7 ⊢ ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ) | |
19 | 16, 17, 18 | sylancr 695 | . . . . . 6 ⊢ (𝜑 → (-1↑𝑁) ∈ ℤ) |
20 | 2z 11409 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
21 | zexpcl 12875 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℤ) | |
22 | 20, 8, 21 | sylancr 695 | . . . . . 6 ⊢ (𝜑 → (2↑𝐻) ∈ ℤ) |
23 | 19, 22 | zmulcld 11488 | . . . . 5 ⊢ (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ) |
24 | 9 | nnzd 11481 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
25 | eldifi 3732 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
26 | prmnn 15388 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
27 | 1, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
28 | 1, 2 | gausslemma2dlem0c 25083 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
29 | cncongrcoprm 15384 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ ∧ (!‘𝐻) ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ((!‘𝐻) gcd 𝑃) = 1)) → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) | |
30 | 15, 23, 24, 27, 28, 29 | syl32anc 1334 | . . . 4 ⊢ (𝜑 → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
31 | 14, 30 | bitrd 268 | . . 3 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
32 | simpr 477 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) | |
33 | 26 | nnred 11035 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ) |
34 | prmgt1 15409 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
35 | 33, 34 | jca 554 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃)) |
36 | 25, 35 | syl 17 | . . . . . . 7 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℝ ∧ 1 < 𝑃)) |
37 | 1mod 12702 | . . . . . . 7 ⊢ ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1) | |
38 | 1, 36, 37 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (1 mod 𝑃) = 1) |
39 | 38 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = 1) |
40 | 32, 39 | eqtr3d 2658 | . . . 4 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
41 | 40 | ex 450 | . . 3 ⊢ (𝜑 → ((1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
42 | 31, 41 | sylbid 230 | . 2 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
43 | 6, 42 | mpd 15 | 1 ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 ifcif 4086 {csn 4177 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 1c1 9937 · cmul 9941 < clt 10074 − cmin 10266 -cneg 10267 / cdiv 10684 ℕcn 11020 2c2 11070 4c4 11072 ℕ0cn0 11292 ℤcz 11377 ...cfz 12326 ⌊cfl 12591 mod cmo 12668 ↑cexp 12860 !cfa 13060 gcd cgcd 15216 ℙcprime 15385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ioo 12179 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-fac 13061 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-prod 14636 df-dvds 14984 df-gcd 15217 df-prm 15386 |
This theorem is referenced by: gausslemma2d 25099 |
Copyright terms: Public domain | W3C validator |