Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem2 Structured version   Visualization version   GIF version

Theorem dirkercncflem2 40321
Description: Lemma used to prove that the Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem2.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem2.f 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
dirkercncflem2.g 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
dirkercncflem2.yne0 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
dirkercncflem2.h 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
dirkercncflem2.i 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
dirkercncflem2.l 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
dirkercncflem2.n (𝜑𝑁 ∈ ℕ)
dirkercncflem2.y (𝜑𝑌 ∈ (𝐴(,)𝐵))
dirkercncflem2.ymod (𝜑 → (𝑌 mod (2 · π)) = 0)
dirkercncflem2.11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
Assertion
Ref Expression
dirkercncflem2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
Distinct variable groups:   𝑤,𝐴,𝑦   𝑤,𝐵,𝑦   𝑦,𝐷   𝑤,𝐹,𝑦   𝑤,𝐺,𝑦   𝑤,𝐻,𝑦   𝑤,𝐼,𝑦   𝑦,𝐿   𝑤,𝑁,𝑦   𝑤,𝑌,𝑦   𝑦,𝑛   𝜑,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑤,𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑛)   𝐼(𝑛)   𝐿(𝑤,𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem2
StepHypRef Expression
1 difss 3737 . . . . 5 ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ (𝐴(,)𝐵)
2 ioossre 12235 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
31, 2sstri 3612 . . . 4 ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ
43a1i 11 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
5 dirkercncflem2.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
65adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℕ)
76nnred 11035 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℝ)
8 halfre 11246 . . . . . . . 8 (1 / 2) ∈ ℝ
98a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℝ)
107, 9readdcld 10069 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑁 + (1 / 2)) ∈ ℝ)
114sselda 3603 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℝ)
1210, 11remulcld 10070 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℝ)
1312resincld 14873 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℝ)
14 dirkercncflem2.f . . . 4 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
1513, 14fmptd 6385 . . 3 (𝜑𝐹:((𝐴(,)𝐵) ∖ {𝑌})⟶ℝ)
16 2re 11090 . . . . . . 7 2 ∈ ℝ
17 pire 24210 . . . . . . 7 π ∈ ℝ
1816, 17remulcli 10054 . . . . . 6 (2 · π) ∈ ℝ
1918a1i 11 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ)
2011rehalfcld 11279 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℝ)
2120resincld 14873 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ∈ ℝ)
2219, 21remulcld 10070 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ)
23 dirkercncflem2.g . . . 4 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
2422, 23fmptd 6385 . . 3 (𝜑𝐺:((𝐴(,)𝐵) ∖ {𝑌})⟶ℝ)
25 iooretop 22569 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
2625a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
27 dirkercncflem2.y . . 3 (𝜑𝑌 ∈ (𝐴(,)𝐵))
28 eqid 2622 . . 3 ((𝐴(,)𝐵) ∖ {𝑌}) = ((𝐴(,)𝐵) ∖ {𝑌})
2914a1i 11 . . . . . . . 8 (𝜑𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
3029oveq2d 6666 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
31 resmpt 5449 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
323, 31ax-mp 5 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
3332eqcomi 2631 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))
3433a1i 11 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
3534oveq2d 6666 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))))
36 ax-resscn 9993 . . . . . . . . . 10 ℝ ⊆ ℂ
3736a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
385nncnd 11036 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
39 halfcn 11247 . . . . . . . . . . . . . . 15 (1 / 2) ∈ ℂ
4039a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (1 / 2) ∈ ℂ)
4138, 40addcld 10059 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
4241adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℂ)
4337sselda 3603 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
4442, 43mulcld 10060 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
4544sincld 14860 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
46 eqid 2622 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
4745, 46fmptd 6385 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℝ⟶ℂ)
48 ssid 3624 . . . . . . . . . . 11 ℝ ⊆ ℝ
4948, 3pm3.2i 471 . . . . . . . . . 10 (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
5049a1i 11 . . . . . . . . 9 (𝜑 → (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ))
51 eqid 2622 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5251tgioo2 22606 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
5351, 52dvres 23675 . . . . . . . . 9 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
5437, 47, 50, 53syl21anc 1325 . . . . . . . 8 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
55 retop 22565 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
56 rehaus 22602 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Haus
5727elioored 39776 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ)
58 uniretop 22566 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
5958sncld 21175 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Haus ∧ 𝑌 ∈ ℝ) → {𝑌} ∈ (Clsd‘(topGen‘ran (,))))
6056, 57, 59sylancr 695 . . . . . . . . . . . 12 (𝜑 → {𝑌} ∈ (Clsd‘(topGen‘ran (,))))
6158difopn 20838 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ∧ {𝑌} ∈ (Clsd‘(topGen‘ran (,)))) → ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,)))
6225, 60, 61sylancr 695 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,)))
63 isopn3i 20886 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌})) = ((𝐴(,)𝐵) ∖ {𝑌}))
6455, 62, 63sylancr 695 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌})) = ((𝐴(,)𝐵) ∖ {𝑌}))
6564reseq2d 5396 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
66 reelprrecn 10028 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
6766a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
6841adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → (𝑁 + (1 / 2)) ∈ ℂ)
69 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
7068, 69mulcld 10060 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
7170sincld 14860 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
72 eqid 2622 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
7371, 72fmptd 6385 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℂ⟶ℂ)
74 ssid 3624 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
7574a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
76 dvsinax 40127 . . . . . . . . . . . . . . . 16 ((𝑁 + (1 / 2)) ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
7741, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
7877dmeqd 5326 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = dom (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
79 eqid 2622 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
8070coscld 14861 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℂ) → (cos‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
8168, 80mulcld 10060 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ)
8279, 81dmmptd 6024 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = ℂ)
8378, 82eqtrd 2656 . . . . . . . . . . . . 13 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = ℂ)
8436, 83syl5sseqr 3654 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
85 dvres3 23677 . . . . . . . . . . . 12 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
8667, 73, 75, 84, 85syl22anc 1327 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
87 resmpt 5449 . . . . . . . . . . . . 13 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
8836, 87mp1i 13 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
8988oveq2d 6666 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
9077reseq1d 5395 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
91 resmpt 5449 . . . . . . . . . . . . 13 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9236, 91ax-mp 5 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
9390, 92syl6eq 2672 . . . . . . . . . . 11 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9486, 89, 933eqtr3d 2664 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9594reseq1d 5395 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
96 resmpt 5449 . . . . . . . . . 10 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
973, 96mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9865, 95, 973eqtrd 2660 . . . . . . . 8 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9935, 54, 983eqtrd 2660 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
100 dirkercncflem2.h . . . . . . . . 9 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
101100a1i 11 . . . . . . . 8 (𝜑𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
102101eqcomd 2628 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = 𝐻)
10330, 99, 1023eqtrd 2660 . . . . . 6 (𝜑 → (ℝ D 𝐹) = 𝐻)
104103dmeqd 5326 . . . . 5 (𝜑 → dom (ℝ D 𝐹) = dom 𝐻)
10511recnd 10068 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℂ)
106105, 81syldan 487 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ)
107100, 106dmmptd 6024 . . . . 5 (𝜑 → dom 𝐻 = ((𝐴(,)𝐵) ∖ {𝑌}))
108104, 107eqtr2d 2657 . . . 4 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐹))
109 eqimss 3657 . . . 4 (((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐹) → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐹))
110108, 109syl 17 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐹))
111 dirkercncflem2.i . . . . . . . 8 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
112111a1i 11 . . . . . . 7 (𝜑𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
113 resmpt 5449 . . . . . . . . . . . . 13 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
1143, 113ax-mp 5 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
115114eqcomi 2631 . . . . . . . . . . 11 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))
116115oveq2i 6661 . . . . . . . . . 10 (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
117116a1i 11 . . . . . . . . 9 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))))
118 2cn 11091 . . . . . . . . . . . . . 14 2 ∈ ℂ
119 picn 24211 . . . . . . . . . . . . . 14 π ∈ ℂ
120118, 119mulcli 10045 . . . . . . . . . . . . 13 (2 · π) ∈ ℂ
121120a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (2 · π) ∈ ℂ)
12243halfcld 11277 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 2) ∈ ℂ)
123122sincld 14860 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (sin‘(𝑦 / 2)) ∈ ℂ)
124121, 123mulcld 10060 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
125 eqid 2622 . . . . . . . . . . 11 (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))
126124, 125fmptd 6385 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))):ℝ⟶ℂ)
12751, 52dvres 23675 . . . . . . . . . 10 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
12837, 126, 50, 127syl21anc 1325 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
12964reseq2d 5396 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
13036sseli 3599 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
131 1cnd 10056 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 1 ∈ ℂ)
132 2cnd 11093 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 2 ∈ ℂ)
133 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
134 2ne0 11113 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
135134a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 2 ≠ 0)
136131, 132, 133, 135div13d 10825 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((1 / 2) · 𝑦) = ((𝑦 / 2) · 1))
137 halfcl 11257 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (𝑦 / 2) ∈ ℂ)
138137mulid1d 10057 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((𝑦 / 2) · 1) = (𝑦 / 2))
139136, 138eqtrd 2656 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℂ → ((1 / 2) · 𝑦) = (𝑦 / 2))
140139fveq2d 6195 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (sin‘((1 / 2) · 𝑦)) = (sin‘(𝑦 / 2)))
141140oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → ((2 · π) · (sin‘((1 / 2) · 𝑦))) = ((2 · π) · (sin‘(𝑦 / 2))))
142141eqcomd 2628 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
143130, 142syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
144143adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
145144mpteq2dva 4744 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
146145oveq2d 6666 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
147120a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (2 · π) ∈ ℂ)
14839a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℂ) → (1 / 2) ∈ ℂ)
149148, 69mulcld 10060 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → ((1 / 2) · 𝑦) ∈ ℂ)
150149sincld 14860 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (sin‘((1 / 2) · 𝑦)) ∈ ℂ)
151147, 150mulcld 10060 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (sin‘((1 / 2) · 𝑦))) ∈ ℂ)
152 eqid 2622 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))
153151, 152fmptd 6385 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))):ℂ⟶ℂ)
154 2cnd 11093 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℂ)
155119a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → π ∈ ℂ)
156154, 155mulcld 10060 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · π) ∈ ℂ)
157 dvasinbx 40135 . . . . . . . . . . . . . . . . . . . 20 (((2 · π) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))))
158156, 39, 157sylancl 694 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))))
159 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → 2 ∈ ℂ)
160119a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → π ∈ ℂ)
161159, 160, 148mul32d 10246 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (1 / 2)) = ((2 · (1 / 2)) · π))
162134a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ ℂ) → 2 ≠ 0)
163159, 162recidd 10796 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → (2 · (1 / 2)) = 1)
164163oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → ((2 · (1 / 2)) · π) = (1 · π))
165160mulid2d 10058 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → (1 · π) = π)
166161, 164, 1653eqtrd 2660 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (1 / 2)) = π)
167139fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → (cos‘((1 / 2) · 𝑦)) = (cos‘(𝑦 / 2)))
168167adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℂ) → (cos‘((1 / 2) · 𝑦)) = (cos‘(𝑦 / 2)))
169166, 168oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℂ) → (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦))) = (π · (cos‘(𝑦 / 2))))
170169mpteq2dva 4744 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
171158, 170eqtrd 2656 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
172171dmeqd 5326 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = dom (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
173 eqid 2622 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2))))
17469halfcld 11277 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℂ) → (𝑦 / 2) ∈ ℂ)
175174coscld 14861 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝑦 / 2)) ∈ ℂ)
176160, 175mulcld 10060 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → (π · (cos‘(𝑦 / 2))) ∈ ℂ)
177173, 176dmmptd 6024 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) = ℂ)
178172, 177eqtrd 2656 . . . . . . . . . . . . . . . 16 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = ℂ)
17936, 178syl5sseqr 3654 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
180 dvres3 23677 . . . . . . . . . . . . . . 15 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))) → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ))
18167, 153, 75, 179, 180syl22anc 1327 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ))
182 resmpt 5449 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
18336, 182mp1i 13 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
184183oveq2d 6666 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
185171reseq1d 5395 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ))
186181, 184, 1853eqtr3d 2664 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ))
187 resmpt 5449 . . . . . . . . . . . . . 14 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
18836, 187ax-mp 5 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2))))
189186, 188syl6eq 2672 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
190146, 189eqtrd 2656 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
191190reseq1d 5395 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
1924resmptd 5452 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
193129, 191, 1923eqtrd 2660 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
194117, 128, 1933eqtrd 2660 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
195194eqcomd 2628 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))))
19623a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
197196oveq2d 6666 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))))
198197eqcomd 2628 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D 𝐺))
199112, 195, 1983eqtrrd 2661 . . . . . 6 (𝜑 → (ℝ D 𝐺) = 𝐼)
200199dmeqd 5326 . . . . 5 (𝜑 → dom (ℝ D 𝐺) = dom 𝐼)
201105, 176syldan 487 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (π · (cos‘(𝑦 / 2))) ∈ ℂ)
202111, 201dmmptd 6024 . . . . 5 (𝜑 → dom 𝐼 = ((𝐴(,)𝐵) ∖ {𝑌}))
203200, 202eqtr2d 2657 . . . 4 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐺))
204 eqimss 3657 . . . 4 (((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐺) → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐺))
205203, 204syl 17 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐺))
206105, 70syldan 487 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
207206ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
208 eqid 2622 . . . . . . . 8 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))
209208fnmpt 6020 . . . . . . 7 (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}))
210207, 209syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}))
211 eqidd 2623 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
212 simpr 477 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
213212oveq2d 6666 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
214 simpr 477 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
21538adantr 481 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℂ)
216 1cnd 10056 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℂ)
217216halfcld 11277 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℂ)
218215, 217addcld 10059 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑁 + (1 / 2)) ∈ ℂ)
219 eldifi 3732 . . . . . . . . . . . . . 14 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ (𝐴(,)𝐵))
220219elioored 39776 . . . . . . . . . . . . 13 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ ℝ)
221220recnd 10068 . . . . . . . . . . . 12 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ ℂ)
222221adantl 482 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑤 ∈ ℂ)
223218, 222mulcld 10060 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
224211, 213, 214, 223fvmptd 6288 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
225 eleq1 2689 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↔ 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})))
226225anbi2d 740 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ↔ (𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))))
227 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑦 mod (2 · π)) = (𝑤 mod (2 · π)))
228227neeq1d 2853 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝑦 mod (2 · π)) ≠ 0 ↔ (𝑤 mod (2 · π)) ≠ 0))
229226, 228imbi12d 334 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 mod (2 · π)) ≠ 0) ↔ ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑤 mod (2 · π)) ≠ 0)))
230 eldifi 3732 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ (𝐴(,)𝐵))
231 elioore 12205 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝐴(,)𝐵) → 𝑦 ∈ ℝ)
232230, 231, 1303syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ ℂ)
233 2cnd 11093 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 2 ∈ ℂ)
234119a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → π ∈ ℂ)
235134a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 2 ≠ 0)
236 0re 10040 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
237 pipos 24212 . . . . . . . . . . . . . . . . . . . . . 22 0 < π
238236, 237gtneii 10149 . . . . . . . . . . . . . . . . . . . . 21 π ≠ 0
239238a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → π ≠ 0)
240232, 233, 234, 235, 239divdiv1d 10832 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
241240eqcomd 2628 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
242241adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
243 dirkercncflem2.yne0 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
244243neneqd 2799 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (sin‘(𝑦 / 2)) = 0)
245105halfcld 11277 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℂ)
246 sineq0 24273 . . . . . . . . . . . . . . . . . . 19 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
247245, 246syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
248244, 247mtbid 314 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
249242, 248eqneltrd 2720 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
250 2rp 11837 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
251 pirp 24213 . . . . . . . . . . . . . . . . . 18 π ∈ ℝ+
252 rpmulcl 11855 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
253250, 251, 252mp2an 708 . . . . . . . . . . . . . . . . 17 (2 · π) ∈ ℝ+
254 mod0 12675 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
25511, 253, 254sylancl 694 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
256249, 255mtbird 315 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 mod (2 · π)) = 0)
257256neqned 2801 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 mod (2 · π)) ≠ 0)
258229, 257chvarv 2263 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑤 mod (2 · π)) ≠ 0)
259258neneqd 2799 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑤 mod (2 · π)) = 0)
260 simpll 790 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝜑)
261 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
262221ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑤 ∈ ℂ)
26357recnd 10068 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ ℂ)
264263ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑌 ∈ ℂ)
265 0red 10041 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
2665nnred 11035 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
267 1red 10055 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℝ)
268267rehalfcld 11279 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 / 2) ∈ ℝ)
269266, 268readdcld 10069 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
2705nngt0d 11064 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝑁)
271250a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℝ+)
272271rpreccld 11882 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 / 2) ∈ ℝ+)
273266, 272ltaddrpd 11905 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 < (𝑁 + (1 / 2)))
274265, 266, 269, 270, 273lttrd 10198 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < (𝑁 + (1 / 2)))
275274gt0ne0d 10592 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 + (1 / 2)) ≠ 0)
27641, 275jca 554 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0))
277276ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0))
278 mulcan 10664 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0)) → (((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌) ↔ 𝑤 = 𝑌))
279262, 264, 277, 278syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → (((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌) ↔ 𝑤 = 𝑌))
280261, 279mpbid 222 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑤 = 𝑌)
281 oveq1 6657 . . . . . . . . . . . . . 14 (𝑤 = 𝑌 → (𝑤 mod (2 · π)) = (𝑌 mod (2 · π)))
282 dirkercncflem2.ymod . . . . . . . . . . . . . 14 (𝜑 → (𝑌 mod (2 · π)) = 0)
283281, 282sylan9eqr 2678 . . . . . . . . . . . . 13 ((𝜑𝑤 = 𝑌) → (𝑤 mod (2 · π)) = 0)
284260, 280, 283syl2anc 693 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → (𝑤 mod (2 · π)) = 0)
285259, 284mtand 691 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
28641, 263mulcld 10060 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ)
287286adantr 481 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ)
288 elsn2g 4210 . . . . . . . . . . . 12 (((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ → (((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)} ↔ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)))
289287, 288syl 17 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)} ↔ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)))
290285, 289mtbird 315 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)})
291223, 290eldifd 3585 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑤) ∈ (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
292224, 291eqeltrd 2701 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
293 sinf 14854 . . . . . . . . . . . 12 sin:ℂ⟶ℂ
294293fdmi 6052 . . . . . . . . . . 11 dom sin = ℂ
295294eqcomi 2631 . . . . . . . . . 10 ℂ = dom sin
296295a1i 11 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ℂ = dom sin)
297296difeq1d 3727 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}) = (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
298292, 297eleqtrd 2703 . . . . . . 7 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
299298ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
300 fnfvrnss 6390 . . . . . 6 (((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ∀𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)})) → ran (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ⊆ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
301210, 299, 300syl2anc 693 . . . . 5 (𝜑 → ran (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ⊆ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
302 uncom 3757 . . . . . . . . . 10 (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌}))
303302a1i 11 . . . . . . . . 9 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})))
30427snssd 4340 . . . . . . . . . 10 (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵))
305 undif 4049 . . . . . . . . . 10 ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
306304, 305sylib 208 . . . . . . . . 9 (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
307303, 306eqtrd 2656 . . . . . . . 8 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵))
308307mpteq1d 4738 . . . . . . 7 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
309 iftrue 4092 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑌))
310 oveq2 6658 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
311309, 310eqtr4d 2659 . . . . . . . . . . . 12 (𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
312311adantl 482 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
313 iffalse 4095 . . . . . . . . . . . . 13 𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))
314313adantl 482 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))
315 eqidd 2623 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
316 oveq2 6658 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
317316adantl 482 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
318 simpl 473 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ (𝐴(,)𝐵))
319 id 22 . . . . . . . . . . . . . . . . 17 𝑤 = 𝑌 → ¬ 𝑤 = 𝑌)
320 velsn 4193 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑌} ↔ 𝑤 = 𝑌)
321319, 320sylnibr 319 . . . . . . . . . . . . . . . 16 𝑤 = 𝑌 → ¬ 𝑤 ∈ {𝑌})
322321adantl 482 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → ¬ 𝑤 ∈ {𝑌})
323318, 322eldifd 3585 . . . . . . . . . . . . . 14 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
324323adantll 750 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
32541adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑁 + (1 / 2)) ∈ ℂ)
326 elioore 12205 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (𝐴(,)𝐵) → 𝑤 ∈ ℝ)
327326recnd 10068 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝐴(,)𝐵) → 𝑤 ∈ ℂ)
328327adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 𝑤 ∈ ℂ)
329325, 328mulcld 10060 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
330329adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
331315, 317, 324, 330fvmptd 6288 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
332314, 331eqtrd 2656 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
333312, 332pm2.61dan 832 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
334333mpteq2dva 4744 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)))
335 ioosscn 39716 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ℂ
336 resmpt 5449 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)))
337335, 336ax-mp 5 . . . . . . . . . . . . 13 ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤))
338 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) = (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤))
339338mulc1cncf 22708 . . . . . . . . . . . . . . . 16 ((𝑁 + (1 / 2)) ∈ ℂ → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (ℂ–cn→ℂ))
34041, 339syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (ℂ–cn→ℂ))
34151cnfldtop 22587 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) ∈ Top
342 unicntop 22589 . . . . . . . . . . . . . . . . . . . 20 ℂ = (TopOpen‘ℂfld)
343342restid 16094 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
344341, 343ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
345344eqcomi 2631 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
34651, 345, 345cncfcn 22712 . . . . . . . . . . . . . . . 16 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
34774, 75, 346sylancr 695 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
348340, 347eleqtrd 2703 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3492, 37syl5ss 3614 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
350342cnrest 21089 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
351348, 349, 350syl2anc 693 . . . . . . . . . . . . 13 (𝜑 → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
352337, 351syl5eqelr 2706 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
35351cnfldtopon 22586 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
354 resttopon 20965 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
355353, 349, 354sylancr 695 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
356 cncnp 21084 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
357355, 353, 356sylancl 694 . . . . . . . . . . . 12 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
358352, 357mpbid 222 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
359358simprd 479 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
360 fveq2 6191 . . . . . . . . . . . 12 (𝑦 = 𝑌 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
361360eleq2d 2687 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
362361rspccva 3308 . . . . . . . . . 10 ((∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
363359, 27, 362syl2anc 693 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
364334, 363eqeltrd 2701 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
365307eqcomd 2628 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) = (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))
366365oveq2d 6666 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})))
367366oveq1d 6665 . . . . . . . . 9 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld)))
368367fveq1d 6193 . . . . . . . 8 (𝜑 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌) = ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
369364, 368eleqtrd 2703 . . . . . . 7 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
370308, 369eqeltrd 2701 . . . . . 6 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
371 eqid 2622 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))
372 eqid 2622 . . . . . . 7 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)))
373206, 208fmptd 6385 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
3744, 36syl6ss 3615 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℂ)
375371, 51, 372, 373, 374, 263ellimc 23637 . . . . . 6 (𝜑 → (((𝑁 + (1 / 2)) · 𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
376370, 375mpbird 247 . . . . 5 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) lim 𝑌))
377134a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
378238a1i 11 . . . . . . . . . . . 12 (𝜑 → π ≠ 0)
379154, 155, 377, 378mulne0d 10679 . . . . . . . . . . 11 (𝜑 → (2 · π) ≠ 0)
380263, 156, 379divcan1d 10802 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) = 𝑌)
381380eqcomd 2628 . . . . . . . . 9 (𝜑𝑌 = ((𝑌 / (2 · π)) · (2 · π)))
382381oveq2d 6666 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))))
383382fveq2d 6195 . . . . . . 7 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) = (sin‘((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π)))))
384263, 156, 379divcld 10801 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) ∈ ℂ)
38541, 384, 156mul12d 10245 . . . . . . . . . 10 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = ((𝑌 / (2 · π)) · ((𝑁 + (1 / 2)) · (2 · π))))
38641, 154, 155mulassd 10063 . . . . . . . . . . . 12 (𝜑 → (((𝑁 + (1 / 2)) · 2) · π) = ((𝑁 + (1 / 2)) · (2 · π)))
387386eqcomd 2628 . . . . . . . . . . 11 (𝜑 → ((𝑁 + (1 / 2)) · (2 · π)) = (((𝑁 + (1 / 2)) · 2) · π))
388387oveq2d 6666 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · ((𝑁 + (1 / 2)) · (2 · π))) = ((𝑌 / (2 · π)) · (((𝑁 + (1 / 2)) · 2) · π)))
38938, 40, 154adddird 10065 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + (1 / 2)) · 2) = ((𝑁 · 2) + ((1 / 2) · 2)))
390154, 377recid2d 10797 . . . . . . . . . . . . . 14 (𝜑 → ((1 / 2) · 2) = 1)
391390oveq2d 6666 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 · 2) + ((1 / 2) · 2)) = ((𝑁 · 2) + 1))
392389, 391eqtrd 2656 . . . . . . . . . . . 12 (𝜑 → ((𝑁 + (1 / 2)) · 2) = ((𝑁 · 2) + 1))
393392oveq1d 6665 . . . . . . . . . . 11 (𝜑 → (((𝑁 + (1 / 2)) · 2) · π) = (((𝑁 · 2) + 1) · π))
394393oveq2d 6666 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · (((𝑁 + (1 / 2)) · 2) · π)) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
395385, 388, 3943eqtrd 2660 . . . . . . . . 9 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
39638, 154mulcld 10060 . . . . . . . . . . 11 (𝜑 → (𝑁 · 2) ∈ ℂ)
397 1cnd 10056 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
398396, 397addcld 10059 . . . . . . . . . 10 (𝜑 → ((𝑁 · 2) + 1) ∈ ℂ)
399384, 398, 155mulassd 10063 . . . . . . . . 9 (𝜑 → (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
400395, 399eqtr4d 2659 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π))
401400fveq2d 6195 . . . . . . 7 (𝜑 → (sin‘((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π)))) = (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)))
402 mod0 12675 . . . . . . . . . . 11 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
40357, 253, 402sylancl 694 . . . . . . . . . 10 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
404282, 403mpbid 222 . . . . . . . . 9 (𝜑 → (𝑌 / (2 · π)) ∈ ℤ)
4055nnzd 11481 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
406 2z 11409 . . . . . . . . . . . 12 2 ∈ ℤ
407406a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℤ)
408405, 407zmulcld 11488 . . . . . . . . . 10 (𝜑 → (𝑁 · 2) ∈ ℤ)
409408peano2zd 11485 . . . . . . . . 9 (𝜑 → ((𝑁 · 2) + 1) ∈ ℤ)
410404, 409zmulcld 11488 . . . . . . . 8 (𝜑 → ((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) ∈ ℤ)
411 sinkpi 24271 . . . . . . . 8 (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) ∈ ℤ → (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)) = 0)
412410, 411syl 17 . . . . . . 7 (𝜑 → (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)) = 0)
413383, 401, 4123eqtrd 2660 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) = 0)
414 sincn 24198 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
415414a1i 11 . . . . . . 7 (𝜑 → sin ∈ (ℂ–cn→ℂ))
416415, 286cnlimci 23653 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) ∈ (sin lim ((𝑁 + (1 / 2)) · 𝑌)))
417413, 416eqeltrrd 2702 . . . . 5 (𝜑 → 0 ∈ (sin lim ((𝑁 + (1 / 2)) · 𝑌)))
418301, 376, 417limccog 39852 . . . 4 (𝜑 → 0 ∈ ((sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) lim 𝑌))
41914a1i 11 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
420213fveq2d 6195 . . . . . . . . 9 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
421223sincld 14860 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑤)) ∈ ℂ)
422419, 420, 214, 421fvmptd 6288 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑤) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
423224fveq2d 6195 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
424422, 423eqtr4d 2659 . . . . . . 7 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑤) = (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)))
425424mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (𝐹𝑤)) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
42615feqmptd 6249 . . . . . 6 (𝜑𝐹 = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (𝐹𝑤)))
427 fcompt 6400 . . . . . . 7 ((sin:ℂ⟶ℂ ∧ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ) → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
428293, 373, 427sylancr 695 . . . . . 6 (𝜑 → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
429425, 426, 4283eqtr4rd 2667 . . . . 5 (𝜑 → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = 𝐹)
430429oveq1d 6665 . . . 4 (𝜑 → ((sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) lim 𝑌) = (𝐹 lim 𝑌))
431418, 430eleqtrd 2703 . . 3 (𝜑 → 0 ∈ (𝐹 lim 𝑌))
432 simpr 477 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → 𝑤 = 𝑌)
433432iftrued 4094 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = 0)
434263, 154, 156, 377, 379divdiv32d 10826 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑌 / 2) / (2 · π)) = ((𝑌 / (2 · π)) / 2))
435434oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / 2) / (2 · π)) · (2 · π)) = (((𝑌 / (2 · π)) / 2) · (2 · π)))
436263halfcld 11277 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑌 / 2) ∈ ℂ)
437436, 156, 379divcan1d 10802 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / 2) / (2 · π)) · (2 · π)) = (𝑌 / 2))
438384, 154, 156, 377div32d 10824 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑌 / (2 · π)) / 2) · (2 · π)) = ((𝑌 / (2 · π)) · ((2 · π) / 2)))
439155, 154, 377divcan3d 10806 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · π) / 2) = π)
440439oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑌 / (2 · π)) · ((2 · π) / 2)) = ((𝑌 / (2 · π)) · π))
441438, 440eqtrd 2656 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / (2 · π)) / 2) · (2 · π)) = ((𝑌 / (2 · π)) · π))
442435, 437, 4413eqtr3d 2664 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 / 2) = ((𝑌 / (2 · π)) · π))
443442fveq2d 6195 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑌 / 2)) = (sin‘((𝑌 / (2 · π)) · π)))
444 sinkpi 24271 . . . . . . . . . . . . . . 15 ((𝑌 / (2 · π)) ∈ ℤ → (sin‘((𝑌 / (2 · π)) · π)) = 0)
445404, 444syl 17 . . . . . . . . . . . . . 14 (𝜑 → (sin‘((𝑌 / (2 · π)) · π)) = 0)
446443, 445eqtrd 2656 . . . . . . . . . . . . 13 (𝜑 → (sin‘(𝑌 / 2)) = 0)
447446oveq2d 6666 . . . . . . . . . . . 12 (𝜑 → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · 0))
448156mul01d 10235 . . . . . . . . . . . 12 (𝜑 → ((2 · π) · 0) = 0)
449447, 448eqtrd 2656 . . . . . . . . . . 11 (𝜑 → ((2 · π) · (sin‘(𝑌 / 2))) = 0)
450449eqcomd 2628 . . . . . . . . . 10 (𝜑 → 0 = ((2 · π) · (sin‘(𝑌 / 2))))
451450ad2antrr 762 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → 0 = ((2 · π) · (sin‘(𝑌 / 2))))
452 oveq1 6657 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → (𝑤 / 2) = (𝑌 / 2))
453452fveq2d 6195 . . . . . . . . . . . 12 (𝑤 = 𝑌 → (sin‘(𝑤 / 2)) = (sin‘(𝑌 / 2)))
454453oveq2d 6666 . . . . . . . . . . 11 (𝑤 = 𝑌 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑌 / 2))))
455454eqcomd 2628 . . . . . . . . . 10 (𝑤 = 𝑌 → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
456455adantl 482 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
457433, 451, 4563eqtrd 2660 . . . . . . . 8 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
458 iffalse 4095 . . . . . . . . . 10 𝑤 = 𝑌 → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = (𝐺𝑤))
459458adantl 482 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = (𝐺𝑤))
46023a1i 11 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
461 oveq1 6657 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑦 / 2) = (𝑤 / 2))
462461fveq2d 6195 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (sin‘(𝑦 / 2)) = (sin‘(𝑤 / 2)))
463462oveq2d 6666 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
464463adantl 482 . . . . . . . . . 10 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
465120a1i 11 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (2 · π) ∈ ℂ)
466328halfcld 11277 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 / 2) ∈ ℂ)
467466sincld 14860 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (sin‘(𝑤 / 2)) ∈ ℂ)
468465, 467mulcld 10060 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((2 · π) · (sin‘(𝑤 / 2))) ∈ ℂ)
469468adantr 481 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((2 · π) · (sin‘(𝑤 / 2))) ∈ ℂ)
470460, 464, 324, 469fvmptd 6288 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐺𝑤) = ((2 · π) · (sin‘(𝑤 / 2))))
471459, 470eqtrd 2656 . . . . . . . 8 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
472457, 471pm2.61dan 832 . . . . . . 7 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
473472mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))))
474 eqid 2622 . . . . . . . . . . 11 (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2)))) = (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2))))
47575, 156, 75constcncfg 40084 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℂ ↦ (2 · π)) ∈ (ℂ–cn→ℂ))
476 id 22 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 𝑤 ∈ ℂ)
477 2cnd 11093 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 2 ∈ ℂ)
478134a1i 11 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 2 ≠ 0)
479476, 477, 478divrec2d 10805 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 / 2) = ((1 / 2) · 𝑤))
480479mpteq2ia 4740 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ (𝑤 / 2)) = (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤))
481 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) = (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤))
482481mulc1cncf 22708 . . . . . . . . . . . . . . . 16 ((1 / 2) ∈ ℂ → (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) ∈ (ℂ–cn→ℂ))
48339, 482ax-mp 5 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) ∈ (ℂ–cn→ℂ)
484480, 483eqeltri 2697 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ (𝑤 / 2)) ∈ (ℂ–cn→ℂ)
485484a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ ℂ ↦ (𝑤 / 2)) ∈ (ℂ–cn→ℂ))
486415, 485cncfmpt1f 22716 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℂ ↦ (sin‘(𝑤 / 2))) ∈ (ℂ–cn→ℂ))
487475, 486mulcncf 23215 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (ℂ–cn→ℂ))
488474, 487, 349, 75, 468cncfmptssg 40083 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
489 eqid 2622 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
49051, 489, 345cncfcn 22712 . . . . . . . . . . 11 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
491349, 74, 490sylancl 694 . . . . . . . . . 10 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
492488, 491eleqtrd 2703 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
493 cncnp 21084 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
494355, 353, 493sylancl 694 . . . . . . . . 9 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
495492, 494mpbid 222 . . . . . . . 8 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
496495simprd 479 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
497360eleq2d 2687 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
498497rspccva 3308 . . . . . . 7 ((∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
499496, 27, 498syl2anc 693 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
500473, 499eqeltrd 2701 . . . . 5 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
501307mpteq1d 4738 . . . . 5 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))))
502366eqcomd 2628 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
503502oveq1d 6665 . . . . . 6 (𝜑 → (((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)))
504503fveq1d 6193 . . . . 5 (𝜑 → ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
505500, 501, 5043eltr4d 2716 . . . 4 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
506 eqid 2622 . . . . 5 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤)))
50711, 124syldan 487 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
508507, 23fmptd 6385 . . . . 5 (𝜑𝐺:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
509371, 51, 506, 508, 374, 263ellimc 23637 . . . 4 (𝜑 → (0 ∈ (𝐺 lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
510505, 509mpbird 247 . . 3 (𝜑 → 0 ∈ (𝐺 lim 𝑌))
511256nrexdv 3001 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0)
512 ffun 6048 . . . . . . 7 (𝐺:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ → Fun 𝐺)
513508, 512syl 17 . . . . . 6 (𝜑 → Fun 𝐺)
514 fvelima 6248 . . . . . 6 ((Fun 𝐺 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0)
515513, 514sylan 488 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0)
516 2cnd 11093 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ∈ ℂ)
517119a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ∈ ℂ)
518134a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ≠ 0)
519238a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ≠ 0)
520105, 516, 517, 518, 519divdiv1d 10832 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
521520eqcomd 2628 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
522521adantr 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
523 2cnd 11093 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → 2 ∈ ℂ)
524119a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → π ∈ ℂ)
525523, 524mulcld 10060 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (2 · π) ∈ ℂ)
526232adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℂ)
527526halfcld 11277 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝑦 / 2) ∈ ℂ)
528527sincld 14860 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) ∈ ℂ)
529525, 528mulcld 10060 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
53023fvmpt2 6291 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
531529, 530syldan 487 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
532531eqcomd 2628 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) = (𝐺𝑦))
533 simpr 477 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝐺𝑦) = 0)
534532, 533eqtrd 2656 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) = 0)
535120a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (2 · π) ∈ ℂ)
536232halfcld 11277 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (𝑦 / 2) ∈ ℂ)
537536sincld 14860 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (sin‘(𝑦 / 2)) ∈ ℂ)
538535, 537mul0ord 10677 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (((2 · π) · (sin‘(𝑦 / 2))) = 0 ↔ ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0)))
539538adantr 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (((2 · π) · (sin‘(𝑦 / 2))) = 0 ↔ ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0)))
540534, 539mpbid 222 . . . . . . . . . . . . 13 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0))
541 2cnne0 11242 . . . . . . . . . . . . . . 15 (2 ∈ ℂ ∧ 2 ≠ 0)
542119, 238pm3.2i 471 . . . . . . . . . . . . . . 15 (π ∈ ℂ ∧ π ≠ 0)
543 mulne0 10669 . . . . . . . . . . . . . . 15 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (2 · π) ≠ 0)
544541, 542, 543mp2an 708 . . . . . . . . . . . . . 14 (2 · π) ≠ 0
545544neii 2796 . . . . . . . . . . . . 13 ¬ (2 · π) = 0
546 pm2.53 388 . . . . . . . . . . . . 13 (((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0) → (¬ (2 · π) = 0 → (sin‘(𝑦 / 2)) = 0))
547540, 545, 546mpisyl 21 . . . . . . . . . . . 12 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) = 0)
548547adantll 750 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) = 0)
549105adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℂ)
550549halfcld 11277 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / 2) ∈ ℂ)
551550, 246syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
552548, 551mpbid 222 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((𝑦 / 2) / π) ∈ ℤ)
553522, 552eqeltrd 2701 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / (2 · π)) ∈ ℤ)
55411adantr 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℝ)
555554, 253, 254sylancl 694 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
556553, 555mpbird 247 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 mod (2 · π)) = 0)
557556ex 450 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐺𝑦) = 0 → (𝑦 mod (2 · π)) = 0))
558557reximdva 3017 . . . . . 6 (𝜑 → (∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0 → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0))
559558adantr 481 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → (∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0 → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0))
560515, 559mpd 15 . . . 4 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0)
561511, 560mtand 691 . . 3 (𝜑 → ¬ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌})))
562 simpr 477 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
563111fvmpt2 6291 . . . . . . . . 9 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (π · (cos‘(𝑦 / 2))) ∈ ℂ) → (𝐼𝑦) = (π · (cos‘(𝑦 / 2))))
564562, 201, 563syl2anc 693 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐼𝑦) = (π · (cos‘(𝑦 / 2))))
565536coscld 14861 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (cos‘(𝑦 / 2)) ∈ ℂ)
566565adantl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ∈ ℂ)
567 dirkercncflem2.11 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
568517, 566, 519, 567mulne0d 10679 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (π · (cos‘(𝑦 / 2))) ≠ 0)
569564, 568eqnetrd 2861 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐼𝑦) ≠ 0)
570569neneqd 2799 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝐼𝑦) = 0)
571570nrexdv 3001 . . . . 5 (𝜑 → ¬ ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
572201, 111fmptd 6385 . . . . . . 7 (𝜑𝐼:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
573 ffun 6048 . . . . . . 7 (𝐼:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ → Fun 𝐼)
574572, 573syl 17 . . . . . 6 (𝜑 → Fun 𝐼)
575 fvelima 6248 . . . . . 6 ((Fun 𝐼 ∧ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
576574, 575sylan 488 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
577571, 576mtand 691 . . . 4 (𝜑 → ¬ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌})))
578199imaeq1d 5465 . . . 4 (𝜑 → ((ℝ D 𝐺) “ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌})))
579577, 578neleqtrrd 2723 . . 3 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ ((𝐴(,)𝐵) ∖ {𝑌})))
580 dirkercncflem2.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
581580dirkerval2 40311 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ ℝ) → ((𝐷𝑁)‘𝑌) = if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))))
5825, 57, 581syl2anc 693 . . . 4 (𝜑 → ((𝐷𝑁)‘𝑌) = if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))))
583282iftrued 4094 . . . . 5 (𝜑 → if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
584 dirkercncflem2.l . . . . . . . . . . 11 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
585584a1i 11 . . . . . . . . . 10 (𝜑𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))))
586 iftrue 4092 . . . . . . . . . . . . . 14 (𝑤 = 𝑌 → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = (((2 · 𝑁) + 1) / (2 · π)))
587586adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = (((2 · 𝑁) + 1) / (2 · π)))
588154, 38mulcld 10060 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 · 𝑁) ∈ ℂ)
589588, 397addcld 10059 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
590589, 154, 155, 377, 378divdiv1d 10832 . . . . . . . . . . . . . . . 16 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = (((2 · 𝑁) + 1) / (2 · π)))
591590eqcomd 2628 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
592588, 397, 154, 377divdird 10839 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
59338, 154, 377divcan3d 10806 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · 𝑁) / 2) = 𝑁)
594593oveq1d 6665 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
595592, 594eqtrd 2656 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
596595oveq1d 6665 . . . . . . . . . . . . . . 15 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = ((𝑁 + (1 / 2)) / π))
597591, 596eqtrd 2656 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((𝑁 + (1 / 2)) / π))
598597ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((2 · 𝑁) + 1) / (2 · π)) = ((𝑁 + (1 / 2)) / π))
599310fveq2d 6195 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑌 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑌)))
600599oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑌 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))))
601452fveq2d 6195 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑌 → (cos‘(𝑤 / 2)) = (cos‘(𝑌 / 2)))
602601oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑌 → (π · (cos‘(𝑤 / 2))) = (π · (cos‘(𝑌 / 2))))
603600, 602oveq12d 6668 . . . . . . . . . . . . . . 15 (𝑤 = 𝑌 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))))
604603adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))))
60538, 40, 263adddird 10065 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑁 · 𝑌) + ((1 / 2) · 𝑌)))
606397, 154, 263, 377div32d 10824 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1 / 2) · 𝑌) = (1 · (𝑌 / 2)))
607436mulid2d 10058 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · (𝑌 / 2)) = (𝑌 / 2))
608606, 607eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1 / 2) · 𝑌) = (𝑌 / 2))
609608oveq2d 6666 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) + ((1 / 2) · 𝑌)) = ((𝑁 · 𝑌) + (𝑌 / 2)))
61038, 263mulcld 10060 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑁 · 𝑌) ∈ ℂ)
611610, 436addcomd 10238 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) + (𝑌 / 2)) = ((𝑌 / 2) + (𝑁 · 𝑌)))
612605, 609, 6113eqtrd 2660 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑌 / 2) + (𝑁 · 𝑌)))
613612fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑁 + (1 / 2)) · 𝑌)) = (cos‘((𝑌 / 2) + (𝑁 · 𝑌))))
614610, 156, 379divcan1d 10802 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑁 · 𝑌) / (2 · π)) · (2 · π)) = (𝑁 · 𝑌))
615614eqcomd 2628 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 · 𝑌) = (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))
616615oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) + (𝑁 · 𝑌)) = ((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π))))
617616fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑌 / 2) + (𝑁 · 𝑌))) = (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))))
61838, 263, 156, 379divassd 10836 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) / (2 · π)) = (𝑁 · (𝑌 / (2 · π))))
619405, 404zmulcld 11488 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 · (𝑌 / (2 · π))) ∈ ℤ)
620618, 619eqeltrd 2701 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 · 𝑌) / (2 · π)) ∈ ℤ)
621 cosper 24234 . . . . . . . . . . . . . . . . . . . 20 (((𝑌 / 2) ∈ ℂ ∧ ((𝑁 · 𝑌) / (2 · π)) ∈ ℤ) → (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))) = (cos‘(𝑌 / 2)))
622436, 620, 621syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))) = (cos‘(𝑌 / 2)))
623613, 617, 6223eqtrd 2660 . . . . . . . . . . . . . . . . . 18 (𝜑 → (cos‘((𝑁 + (1 / 2)) · 𝑌)) = (cos‘(𝑌 / 2)))
624623oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) = ((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))))
625624oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))) / (π · (cos‘(𝑌 / 2)))))
626436coscld 14861 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos‘(𝑌 / 2)) ∈ ℂ)
627263, 154, 155, 377, 378divdiv1d 10832 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑌 / 2) / π) = (𝑌 / (2 · π)))
628627, 404eqeltrd 2701 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) / π) ∈ ℤ)
629628zred 11482 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑌 / 2) / π) ∈ ℝ)
630629, 272ltaddrpd 11905 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) / π) < (((𝑌 / 2) / π) + (1 / 2)))
631 halflt1 11250 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) < 1
632631a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 / 2) < 1)
633268, 267, 629, 632ltadd2dd 10196 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝑌 / 2) / π) + (1 / 2)) < (((𝑌 / 2) / π) + 1))
634 btwnnz 11453 . . . . . . . . . . . . . . . . . . . 20 ((((𝑌 / 2) / π) ∈ ℤ ∧ ((𝑌 / 2) / π) < (((𝑌 / 2) / π) + (1 / 2)) ∧ (((𝑌 / 2) / π) + (1 / 2)) < (((𝑌 / 2) / π) + 1)) → ¬ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ)
635628, 630, 633, 634syl3anc 1326 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ)
636 coseq0 40075 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 / 2) ∈ ℂ → ((cos‘(𝑌 / 2)) = 0 ↔ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ))
637436, 636syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((cos‘(𝑌 / 2)) = 0 ↔ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ))
638635, 637mtbird 315 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (cos‘(𝑌 / 2)) = 0)
639638neqned 2801 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos‘(𝑌 / 2)) ≠ 0)
64041, 155, 626, 378, 639divcan5rd 10828 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
641625, 640eqtrd 2656 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
642641ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
643604, 642eqtr2d 2657 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) / π) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
644587, 598, 6433eqtrrd 2661 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
645 iffalse 4095 . . . . . . . . . . . . . 14 𝑤 = 𝑌 → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))
646645adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))
647 eqidd 2623 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))))
648 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝐻𝑦) = (𝐻𝑤))
649 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝐼𝑦) = (𝐼𝑤))
650648, 649oveq12d 6668 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝐻𝑦) / (𝐼𝑦)) = ((𝐻𝑤) / (𝐼𝑤)))
651650adantl 482 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝐻𝑦) / (𝐼𝑦)) = ((𝐻𝑤) / (𝐼𝑤)))
652106, 100fmptd 6385 . . . . . . . . . . . . . . . . 17 (𝜑𝐻:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
653652ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐻:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
654653, 324ffvelrnd 6360 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐻𝑤) ∈ ℂ)
655572ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐼:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
656655, 324ffvelrnd 6360 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) ∈ ℂ)
657111a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
658 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
659658oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (𝑦 / 2) = (𝑤 / 2))
660659fveq2d 6195 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (cos‘(𝑦 / 2)) = (cos‘(𝑤 / 2)))
661660oveq2d 6666 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (π · (cos‘(𝑦 / 2))) = (π · (cos‘(𝑤 / 2))))
662119a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴(,)𝐵) → π ∈ ℂ)
663327halfcld 11277 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝐴(,)𝐵) → (𝑤 / 2) ∈ ℂ)
664663coscld 14861 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴(,)𝐵) → (cos‘(𝑤 / 2)) ∈ ℂ)
665662, 664mulcld 10060 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝐴(,)𝐵) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
666665ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
667657, 661, 324, 666fvmptd 6288 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) = (π · (cos‘(𝑤 / 2))))
668542a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π ∈ ℂ ∧ π ≠ 0))
669664ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ∈ ℂ)
670 simpll 790 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝜑)
671461fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (cos‘(𝑦 / 2)) = (cos‘(𝑤 / 2)))
672671neeq1d 2853 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → ((cos‘(𝑦 / 2)) ≠ 0 ↔ (cos‘(𝑤 / 2)) ≠ 0))
673226, 672imbi12d 334 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0) ↔ ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑤 / 2)) ≠ 0)))
674673, 567chvarv 2263 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑤 / 2)) ≠ 0)
675670, 324, 674syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
676 mulne0 10669 . . . . . . . . . . . . . . . . 17 (((π ∈ ℂ ∧ π ≠ 0) ∧ ((cos‘(𝑤 / 2)) ∈ ℂ ∧ (cos‘(𝑤 / 2)) ≠ 0)) → (π · (cos‘(𝑤 / 2))) ≠ 0)
677668, 669, 675, 676syl12anc 1324 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π · (cos‘(𝑤 / 2))) ≠ 0)
678667, 677eqnetrd 2861 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) ≠ 0)
679654, 656, 678divcld 10801 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝐻𝑤) / (𝐼𝑤)) ∈ ℂ)
680647, 651, 324, 679fvmptd 6288 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤) = ((𝐻𝑤) / (𝐼𝑤)))
681100a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
682317fveq2d 6195 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (cos‘((𝑁 + (1 / 2)) · 𝑦)) = (cos‘((𝑁 + (1 / 2)) · 𝑤)))
683682oveq2d 6666 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))))
684329coscld 14861 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘((𝑁 + (1 / 2)) · 𝑤)) ∈ ℂ)
685325, 684mulcld 10060 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ℂ)
686685adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ℂ)
687681, 683, 324, 686fvmptd 6288 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐻𝑤) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))))
688687, 667oveq12d 6668 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝐻𝑤) / (𝐼𝑤)) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
689646, 680, 6883eqtrrd 2661 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
690644, 689pm2.61dan 832 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
691690mpteq2dva 4744 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))))
692585, 691eqtr2d 2657 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = 𝐿)
693349, 41, 75constcncfg 40084 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
694 cosf 14855 . . . . . . . . . . . . . . . . . . 19 cos:ℂ⟶ℂ
695231, 44sylan2 491 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
696 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))
697695, 696fmptd 6385 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)):(𝐴(,)𝐵)⟶ℂ)
698 fcompt 6400 . . . . . . . . . . . . . . . . . . 19 ((cos:ℂ⟶ℂ ∧ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)):(𝐴(,)𝐵)⟶ℂ) → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
699694, 697, 698sylancr 695 . . . . . . . . . . . . . . . . . 18 (𝜑 → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
700 eqidd 2623 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
701316adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
702 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 𝑤 ∈ (𝐴(,)𝐵))
703700, 701, 702, 329fvmptd 6288 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
704703fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑤)))
705704mpteq2dva 4744 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))))
706699, 705eqtr2d 2657 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))) = (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))))
707349, 41, 75constcncfg 40084 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
708349, 75idcncfg 40085 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 𝑦) ∈ ((𝐴(,)𝐵)–cn→ℂ))
709707, 708mulcncf 23215 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
710 coscn 24199 . . . . . . . . . . . . . . . . . . 19 cos ∈ (ℂ–cn→ℂ)
711710a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → cos ∈ (ℂ–cn→ℂ))
712709, 711cncfco 22710 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
713706, 712eqeltrd 2701 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
714693, 713mulcncf 23215 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
715 eqid 2622 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2))))
716349, 155, 75constcncfg 40084 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ π) ∈ ((𝐴(,)𝐵)–cn→ℂ))
717 2cnd 11093 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
718134a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
719328, 717, 718divrecd 10804 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 / 2) = (𝑤 · (1 / 2)))
720719mpteq2dva 4744 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 / 2)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 · (1 / 2))))
721 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2))) = (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2)))
722 cncfmptid 22715 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ))
72374, 74, 722mp2an 708 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ)
724723a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ))
72574a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 2) ∈ ℂ → ℂ ⊆ ℂ)
726 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 2) ∈ ℂ → (1 / 2) ∈ ℂ)
727725, 726, 725constcncfg 40084 . . . . . . . . . . . . . . . . . . . . . 22 ((1 / 2) ∈ ℂ → (𝑤 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
72839, 727mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑤 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
729724, 728mulcncf 23215 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2))) ∈ (ℂ–cn→ℂ))
730719, 466eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 · (1 / 2)) ∈ ℂ)
731721, 729, 349, 75, 730cncfmptssg 40083 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 · (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
732720, 731eqeltrd 2701 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 / 2)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
733711, 732cncfmpt1f 22716 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑤 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
734716, 733mulcncf 23215 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
735 ssid 3624 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)
736735a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
737 difssd 3738 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
738665adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
739119a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → π ∈ ℂ)
740664adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘(𝑤 / 2)) ∈ ℂ)
741238a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → π ≠ 0)
742601adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 = 𝑌) → (cos‘(𝑤 / 2)) = (cos‘(𝑌 / 2)))
743639adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 = 𝑌) → (cos‘(𝑌 / 2)) ≠ 0)
744742, 743eqnetrd 2861 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
745744adantlr 751 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
746745, 675pm2.61dan 832 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘(𝑤 / 2)) ≠ 0)
747739, 740, 741, 746mulne0d 10679 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ≠ 0)
748747neneqd 2799 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ¬ (π · (cos‘(𝑤 / 2))) = 0)
749 elsng 4191 . . . . . . . . . . . . . . . . . . 19 ((π · (cos‘(𝑤 / 2))) ∈ ℂ → ((π · (cos‘(𝑤 / 2))) ∈ {0} ↔ (π · (cos‘(𝑤 / 2))) = 0))
750738, 749syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((π · (cos‘(𝑤 / 2))) ∈ {0} ↔ (π · (cos‘(𝑤 / 2))) = 0))
751748, 750mtbird 315 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ¬ (π · (cos‘(𝑤 / 2))) ∈ {0})
752738, 751eldifd 3585 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ∈ (ℂ ∖ {0}))
753715, 734, 736, 737, 752cncfmptssg 40083 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
754714, 753divcncf 23216 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
755754, 491eleqtrd 2703 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
756585, 755eqeltrd 2701 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
757 cncnp 21084 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
758355, 353, 757sylancl 694 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
759756, 758mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
760759simprd 479 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
761360eleq2d 2687 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ 𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
762761rspccva 3308 . . . . . . . . . 10 ((∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → 𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
763760, 27, 762syl2anc 693 . . . . . . . . 9 (𝜑𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
764692, 763eqeltrd 2701 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
765307mpteq1d 4738 . . . . . . . 8 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))))
766764, 765, 5043eltr4d 2716 . . . . . . 7 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
767 eqid 2622 . . . . . . . 8 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
768100fvmpt2 6291 . . . . . . . . . . . 12 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ) → (𝐻𝑦) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
769562, 106, 768syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐻𝑦) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
770769, 564oveq12d 6668 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐻𝑦) / (𝐼𝑦)) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) / (π · (cos‘(𝑦 / 2)))))
771106, 201, 568divcld 10801 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) / (π · (cos‘(𝑦 / 2)))) ∈ ℂ)
772770, 771eqeltrd 2701 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐻𝑦) / (𝐼𝑦)) ∈ ℂ)
773 eqid 2622 . . . . . . . . 9 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))
774772, 773fmptd 6385 . . . . . . . 8 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
775371, 51, 767, 774, 374, 263ellimc 23637 . . . . . . 7 (𝜑 → ((((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
776766, 775mpbird 247 . . . . . 6 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌))
777103eqcomd 2628 . . . . . . . . . 10 (𝜑𝐻 = (ℝ D 𝐹))
778777fveq1d 6193 . . . . . . . . 9 (𝜑 → (𝐻𝑦) = ((ℝ D 𝐹)‘𝑦))
779199eqcomd 2628 . . . . . . . . . 10 (𝜑𝐼 = (ℝ D 𝐺))
780779fveq1d 6193 . . . . . . . . 9 (𝜑 → (𝐼𝑦) = ((ℝ D 𝐺)‘𝑦))
781778, 780oveq12d 6668 . . . . . . . 8 (𝜑 → ((𝐻𝑦) / (𝐼𝑦)) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
782781mpteq2dv 4745 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))))
783782oveq1d 6665 . . . . . 6 (𝜑 → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
784776, 783eleqtrd 2703 . . . . 5 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
785583, 784eqeltrd 2701 . . . 4 (𝜑 → if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
786582, 785eqeltrd 2701 . . 3 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
7874, 15, 24, 26, 27, 28, 110, 205, 431, 510, 561, 579, 786lhop 23779 . 2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) lim 𝑌))
788580dirkerval 40308 . . . . . 6 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
7895, 788syl 17 . . . . 5 (𝜑 → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
790789reseq1d 5395 . . . 4 (𝜑 → ((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
7914resmptd 5452 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
792256iffalsed 4097 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
79313recnd 10068 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
79414fvmpt2 6291 . . . . . . . 8 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ) → (𝐹𝑦) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
795562, 793, 794syl2anc 693 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑦) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
796562, 507, 530syl2anc 693 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
797795, 796oveq12d 6668 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐹𝑦) / (𝐺𝑦)) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
798792, 797eqtr4d 2659 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((𝐹𝑦) / (𝐺𝑦)))
799798mpteq2dva 4744 . . . 4 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))))
800790, 791, 7993eqtrrd 2661 . . 3 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) = ((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
801800oveq1d 6665 . 2 (𝜑 → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) lim 𝑌) = (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
802787, 801eleqtrd 2703 1 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  cun 3572  wss 3574  ifcif 4086  {csn 4177  {cpr 4179   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  ccom 5118  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074   / cdiv 10684  cn 11020  2c2 11070  cz 11377  +crp 11832  (,)cioo 12175   mod cmo 12668  sincsin 14794  cosccos 14795  πcpi 14797  t crest 16081  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  Topctop 20698  TopOnctopon 20715  Clsdccld 20820  intcnt 20821   Cn ccn 21028   CnP ccnp 21029  Hauscha 21112  cnccncf 22679   lim climc 23626   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dirkercncflem3  40322
  Copyright terms: Public domain W3C validator