Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqwvfoura Structured version   Visualization version   GIF version

Theorem sqwvfoura 40445
Description: Fourier coefficients for the square wave function. Since the square function is an odd function, there is no contribution from the 𝐴 coefficients. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
sqwvfoura.t 𝑇 = (2 · π)
sqwvfoura.f 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
sqwvfoura.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sqwvfoura (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0)
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐹(𝑥)

Proof of Theorem sqwvfoura
StepHypRef Expression
1 pire 24210 . . . . . 6 π ∈ ℝ
21renegcli 10342 . . . . 5 -π ∈ ℝ
32a1i 11 . . . 4 (𝜑 → -π ∈ ℝ)
41a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
5 0re 10040 . . . . . 6 0 ∈ ℝ
6 negpilt0 39492 . . . . . . 7 -π < 0
72, 5, 6ltleii 10160 . . . . . 6 -π ≤ 0
8 pipos 24212 . . . . . . 7 0 < π
95, 1, 8ltleii 10160 . . . . . 6 0 ≤ π
102, 1elicc2i 12239 . . . . . 6 (0 ∈ (-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤ π))
115, 7, 9, 10mpbir3an 1244 . . . . 5 0 ∈ (-π[,]π)
1211a1i 11 . . . 4 (𝜑 → 0 ∈ (-π[,]π))
13 1red 10055 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 1 ∈ ℝ)
1413renegcld 10457 . . . . . . . . . . 11 (𝑥 ∈ ℝ → -1 ∈ ℝ)
1513, 14ifcld 4131 . . . . . . . . . 10 (𝑥 ∈ ℝ → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
1615adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
17 sqwvfoura.f . . . . . . . . 9 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
1816, 17fmptd 6385 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
1918adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝐹:ℝ⟶ℝ)
20 elioore 12205 . . . . . . . 8 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
2120adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℝ)
2219, 21ffvelrnd 6360 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (𝐹𝑥) ∈ ℝ)
23 sqwvfoura.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
2423nn0red 11352 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
2524adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑁 ∈ ℝ)
2625, 21remulcld 10070 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → (𝑁 · 𝑥) ∈ ℝ)
2726recoscld 14874 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
2822, 27remulcld 10070 . . . . 5 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) ∈ ℝ)
2928recnd 10068 . . . 4 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) ∈ ℂ)
30 elioore 12205 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℝ)
3130, 15syl 17 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
3217fvmpt2 6291 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
3330, 31, 32syl2anc 693 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
341a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π ∈ ℝ)
35 sqwvfoura.t . . . . . . . . . . . . . 14 𝑇 = (2 · π)
36 2rp 11837 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
37 pirp 24213 . . . . . . . . . . . . . . 15 π ∈ ℝ+
38 rpmulcl 11855 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
3936, 37, 38mp2an 708 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ+
4035, 39eqeltri 2697 . . . . . . . . . . . . 13 𝑇 ∈ ℝ+
4140a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ+)
4230, 41modcld 12674 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → (𝑥 mod 𝑇) ∈ ℝ)
43 picn 24211 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
44432timesi 11147 . . . . . . . . . . . . . . . 16 (2 · π) = (π + π)
4535, 44eqtri 2644 . . . . . . . . . . . . . . 15 𝑇 = (π + π)
4645oveq2i 6661 . . . . . . . . . . . . . 14 (-π + 𝑇) = (-π + (π + π))
472recni 10052 . . . . . . . . . . . . . . 15 -π ∈ ℂ
4847, 43, 43addassi 10048 . . . . . . . . . . . . . 14 ((-π + π) + π) = (-π + (π + π))
4943negidi 10350 . . . . . . . . . . . . . . . . 17 (π + -π) = 0
5043, 47, 49addcomli 10228 . . . . . . . . . . . . . . . 16 (-π + π) = 0
5150oveq1i 6660 . . . . . . . . . . . . . . 15 ((-π + π) + π) = (0 + π)
5243addid2i 10224 . . . . . . . . . . . . . . 15 (0 + π) = π
5351, 52eqtri 2644 . . . . . . . . . . . . . 14 ((-π + π) + π) = π
5446, 48, 533eqtr2ri 2651 . . . . . . . . . . . . 13 π = (-π + 𝑇)
552a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ)
56 2re 11090 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5756, 1remulcli 10054 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℝ
5835, 57eqeltri 2697 . . . . . . . . . . . . . . 15 𝑇 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ)
602rexri 10097 . . . . . . . . . . . . . . . 16 -π ∈ ℝ*
6160a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ*)
62 0red 10041 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ)
6362rexrd 10089 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ*)
64 id 22 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ (-π(,)0))
65 ioogtlb 39717 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → -π < 𝑥)
6661, 63, 64, 65syl3anc 1326 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π < 𝑥)
6755, 30, 59, 66ltadd1dd 10638 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → (-π + 𝑇) < (𝑥 + 𝑇))
6854, 67syl5eqbr 4688 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → π < (𝑥 + 𝑇))
6958recni 10052 . . . . . . . . . . . . . . . . 17 𝑇 ∈ ℂ
7069mulid2i 10043 . . . . . . . . . . . . . . . 16 (1 · 𝑇) = 𝑇
7170eqcomi 2631 . . . . . . . . . . . . . . 15 𝑇 = (1 · 𝑇)
7271oveq2i 6661 . . . . . . . . . . . . . 14 (𝑥 + 𝑇) = (𝑥 + (1 · 𝑇))
7372oveq1i 6660 . . . . . . . . . . . . 13 ((𝑥 + 𝑇) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇)
7430, 59readdcld 10069 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) ∈ ℝ)
758a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 < π)
7662, 34, 74, 75, 68lttrd 10198 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 < (𝑥 + 𝑇))
7762, 74, 76ltled 10185 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 0 ≤ (𝑥 + 𝑇))
78 iooltub 39735 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → 𝑥 < 0)
7961, 63, 64, 78syl3anc 1326 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑥 < 0)
8030, 62, 59, 79ltadd1dd 10638 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < (0 + 𝑇))
8169a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℂ)
8281addid2d 10237 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (0 + 𝑇) = 𝑇)
8380, 82breqtrd 4679 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < 𝑇)
84 modid 12695 . . . . . . . . . . . . . 14 ((((𝑥 + 𝑇) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ (𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇)) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
8574, 41, 77, 83, 84syl22anc 1327 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
86 1zzd 11408 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 1 ∈ ℤ)
87 modcyc 12705 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8830, 41, 86, 87syl3anc 1326 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8973, 85, 883eqtr3a 2680 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) = (𝑥 mod 𝑇))
9068, 89breqtrd 4679 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π < (𝑥 mod 𝑇))
9134, 42, 90ltnsymd 10186 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → ¬ (𝑥 mod 𝑇) < π)
9291iffalsed 4097 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
9333, 92eqtrd 2656 . . . . . . . 8 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = -1)
9493oveq1d 6665 . . . . . . 7 (𝑥 ∈ (-π(,)0) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (-1 · (cos‘(𝑁 · 𝑥))))
9594adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (-1 · (cos‘(𝑁 · 𝑥))))
9695mpteq2dva 4744 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) = (𝑥 ∈ (-π(,)0) ↦ (-1 · (cos‘(𝑁 · 𝑥)))))
97 1cnd 10056 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
9897negcld 10379 . . . . . 6 (𝜑 → -1 ∈ ℂ)
9924adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
10030adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑥 ∈ ℝ)
10199, 100remulcld 10070 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) ∈ ℝ)
102101recoscld 14874 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
103 ioossicc 12259 . . . . . . . 8 (-π(,)0) ⊆ (-π[,]0)
104103a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ⊆ (-π[,]0))
105 ioombl 23333 . . . . . . . 8 (-π(,)0) ∈ dom vol
106105a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ∈ dom vol)
10724adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑁 ∈ ℝ)
108 iccssre 12255 . . . . . . . . . . . 12 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (-π[,]0) ⊆ ℝ)
1092, 5, 108mp2an 708 . . . . . . . . . . 11 (-π[,]0) ⊆ ℝ
110109sseli 3599 . . . . . . . . . 10 (𝑥 ∈ (-π[,]0) → 𝑥 ∈ ℝ)
111110adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑥 ∈ ℝ)
112107, 111remulcld 10070 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]0)) → (𝑁 · 𝑥) ∈ ℝ)
113112recoscld 14874 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]0)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
114 0red 10041 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
115 coscn 24199 . . . . . . . . . 10 cos ∈ (ℂ–cn→ℂ)
116115a1i 11 . . . . . . . . 9 (𝜑 → cos ∈ (ℂ–cn→ℂ))
117 ax-resscn 9993 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
118109, 117sstri 3612 . . . . . . . . . . . 12 (-π[,]0) ⊆ ℂ
119118a1i 11 . . . . . . . . . . 11 (𝜑 → (-π[,]0) ⊆ ℂ)
12024recnd 10068 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
121 ssid 3624 . . . . . . . . . . . 12 ℂ ⊆ ℂ
122121a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
123119, 120, 122constcncfg 40084 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑁) ∈ ((-π[,]0)–cn→ℂ))
124119, 122idcncfg 40085 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑥) ∈ ((-π[,]0)–cn→ℂ))
125123, 124mulcncf 23215 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (𝑁 · 𝑥)) ∈ ((-π[,]0)–cn→ℂ))
126116, 125cncfmpt1f 22716 . . . . . . . 8 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ))
127 cniccibl 23607 . . . . . . . 8 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ)) → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
1283, 114, 126, 127syl3anc 1326 . . . . . . 7 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
129104, 106, 113, 128iblss 23571 . . . . . 6 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
13098, 102, 129iblmulc2 23597 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (-1 · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
13196, 130eqeltrd 2701 . . . 4 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
132 elioore 12205 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ)
133132, 15syl 17 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
134132, 133, 32syl2anc 693 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
13540a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ+)
136 0red 10041 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ)
137136rexrd 10089 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ*)
1381rexri 10097 . . . . . . . . . . . . . . 15 π ∈ ℝ*
139138a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → π ∈ ℝ*)
140 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (0(,)π))
141 ioogtlb 39717 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 0 < 𝑥)
142137, 139, 140, 141syl3anc 1326 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 < 𝑥)
143136, 132, 142ltled 10185 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 0 ≤ 𝑥)
1441a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → π ∈ ℝ)
14558a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ)
146 iooltub 39735 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 𝑥 < π)
147137, 139, 140, 146syl3anc 1326 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑥 < π)
148 2timesgt 39500 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → π < (2 · π))
14937, 148ax-mp 5 . . . . . . . . . . . . . . 15 π < (2 · π)
150149, 35breqtrri 4680 . . . . . . . . . . . . . 14 π < 𝑇
151150a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → π < 𝑇)
152132, 144, 145, 147, 151lttrd 10198 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 𝑥 < 𝑇)
153 modid 12695 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑇)) → (𝑥 mod 𝑇) = 𝑥)
154132, 135, 143, 152, 153syl22anc 1327 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) = 𝑥)
155154, 147eqbrtrd 4675 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) < π)
156155iftrued 4094 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
157134, 156eqtrd 2656 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = 1)
158157oveq1d 6665 . . . . . . 7 (𝑥 ∈ (0(,)π) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (1 · (cos‘(𝑁 · 𝑥))))
159158adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (1 · (cos‘(𝑁 · 𝑥))))
160159mpteq2dva 4744 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) = (𝑥 ∈ (0(,)π) ↦ (1 · (cos‘(𝑁 · 𝑥)))))
16124adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℝ)
162132adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑥 ∈ ℝ)
163161, 162remulcld 10070 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) ∈ ℝ)
164163recoscld 14874 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
165 ioossicc 12259 . . . . . . . 8 (0(,)π) ⊆ (0[,]π)
166165a1i 11 . . . . . . 7 (𝜑 → (0(,)π) ⊆ (0[,]π))
167 ioombl 23333 . . . . . . . 8 (0(,)π) ∈ dom vol
168167a1i 11 . . . . . . 7 (𝜑 → (0(,)π) ∈ dom vol)
16924adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℝ)
170 iccssre 12255 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1715, 1, 170mp2an 708 . . . . . . . . . . 11 (0[,]π) ⊆ ℝ
172171sseli 3599 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ)
173172adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℝ)
174169, 173remulcld 10070 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · 𝑥) ∈ ℝ)
175174recoscld 14874 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
176171, 117sstri 3612 . . . . . . . . . . . 12 (0[,]π) ⊆ ℂ
177176a1i 11 . . . . . . . . . . 11 (𝜑 → (0[,]π) ⊆ ℂ)
178177, 120, 122constcncfg 40084 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑁) ∈ ((0[,]π)–cn→ℂ))
179177, 122idcncfg 40085 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑥) ∈ ((0[,]π)–cn→ℂ))
180178, 179mulcncf 23215 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑁 · 𝑥)) ∈ ((0[,]π)–cn→ℂ))
181116, 180cncfmpt1f 22716 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ))
182 cniccibl 23607 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
183114, 4, 181, 182syl3anc 1326 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
184166, 168, 175, 183iblss 23571 . . . . . 6 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
18597, 164, 184iblmulc2 23597 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (1 · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
186160, 185eqeltrd 2701 . . . 4 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
1873, 4, 12, 29, 131, 186itgsplitioo 23604 . . 3 (𝜑 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = (∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥))
188187oveq1d 6665 . 2 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = ((∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) / π))
18995itgeq2dv 23548 . . . . 5 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = ∫(-π(,)0)(-1 · (cos‘(𝑁 · 𝑥))) d𝑥)
19098, 102, 129itgmulc2 23600 . . . . 5 (𝜑 → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(-π(,)0)(-1 · (cos‘(𝑁 · 𝑥))) d𝑥)
191 oveq1 6657 . . . . . . . . . . . . . 14 (𝑁 = 0 → (𝑁 · 𝑥) = (0 · 𝑥))
192 ioosscn 39716 . . . . . . . . . . . . . . . 16 (-π(,)0) ⊆ ℂ
193192sseli 3599 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℂ)
194193mul02d 10234 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (0 · 𝑥) = 0)
195191, 194sylan9eq 2676 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) = 0)
196195fveq2d 6195 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = (cos‘0))
197 cos0 14880 . . . . . . . . . . . 12 (cos‘0) = 1
198196, 197syl6eq 2672 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = 1)
199198adantll 750 . . . . . . . . . 10 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = 1)
200199itgeq2dv 23548 . . . . . . . . 9 ((𝜑𝑁 = 0) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = ∫(-π(,)0)1 d𝑥)
201 ioovolcl 23338 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (vol‘(-π(,)0)) ∈ ℝ)
2022, 5, 201mp2an 708 . . . . . . . . . . . 12 (vol‘(-π(,)0)) ∈ ℝ
203202a1i 11 . . . . . . . . . . 11 (𝜑 → (vol‘(-π(,)0)) ∈ ℝ)
204 itgconst 23585 . . . . . . . . . . 11 (((-π(,)0) ∈ dom vol ∧ (vol‘(-π(,)0)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
205106, 203, 97, 204syl3anc 1326 . . . . . . . . . 10 (𝜑 → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
206205adantr 481 . . . . . . . . 9 ((𝜑𝑁 = 0) → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
207 volioo 23337 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ -π ≤ 0) → (vol‘(-π(,)0)) = (0 − -π))
2082, 5, 7, 207mp3an 1424 . . . . . . . . . . . . . 14 (vol‘(-π(,)0)) = (0 − -π)
209 0cn 10032 . . . . . . . . . . . . . . 15 0 ∈ ℂ
210209, 43subnegi 10360 . . . . . . . . . . . . . 14 (0 − -π) = (0 + π)
211208, 210, 523eqtri 2648 . . . . . . . . . . . . 13 (vol‘(-π(,)0)) = π
212211a1i 11 . . . . . . . . . . . 12 (𝜑 → (vol‘(-π(,)0)) = π)
213212oveq2d 6666 . . . . . . . . . . 11 (𝜑 → (1 · (vol‘(-π(,)0))) = (1 · π))
21443a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℂ)
215214mulid2d 10058 . . . . . . . . . . 11 (𝜑 → (1 · π) = π)
216213, 215eqtrd 2656 . . . . . . . . . 10 (𝜑 → (1 · (vol‘(-π(,)0))) = π)
217216adantr 481 . . . . . . . . 9 ((𝜑𝑁 = 0) → (1 · (vol‘(-π(,)0))) = π)
218200, 206, 2173eqtrd 2660 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = π)
219218oveq2d 6666 . . . . . . 7 ((𝜑𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = (-1 · π))
22043mulm1i 10475 . . . . . . . 8 (-1 · π) = -π
221220a1i 11 . . . . . . 7 ((𝜑𝑁 = 0) → (-1 · π) = -π)
222 iftrue 4092 . . . . . . . . 9 (𝑁 = 0 → if(𝑁 = 0, -π, 0) = -π)
223222eqcomd 2628 . . . . . . . 8 (𝑁 = 0 → -π = if(𝑁 = 0, -π, 0))
224223adantl 482 . . . . . . 7 ((𝜑𝑁 = 0) → -π = if(𝑁 = 0, -π, 0))
225219, 221, 2243eqtrd 2660 . . . . . 6 ((𝜑𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
22624adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℝ)
22723nn0ge0d 11354 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑁)
228227adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 0 ≤ 𝑁)
229 neqne 2802 . . . . . . . . 9 𝑁 = 0 → 𝑁 ≠ 0)
230229adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
231226, 228, 230ne0gt0d 10174 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 = 0) → 0 < 𝑁)
232 1cnd 10056 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → 1 ∈ ℂ)
233232negcld 10379 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → -1 ∈ ℂ)
234233mul01d 10235 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → (-1 · 0) = 0)
235120adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℂ)
2362a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → -π ∈ ℝ)
237 0red 10041 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 0 ∈ ℝ)
2387a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → -π ≤ 0)
239 simpr 477 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁)
240239gt0ne0d 10592 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ≠ 0)
241235, 236, 237, 238, 240itgcoscmulx 40185 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = (((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) / 𝑁))
242120mul01d 10235 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · 0) = 0)
243242fveq2d 6195 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘(𝑁 · 0)) = (sin‘0))
244 sin0 14879 . . . . . . . . . . . . . . 15 (sin‘0) = 0
245243, 244syl6eq 2672 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · 0)) = 0)
246120, 214mulneg2d 10484 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · -π) = -(𝑁 · π))
247246fveq2d 6195 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘(𝑁 · -π)) = (sin‘-(𝑁 · π)))
248120, 214mulcld 10060 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · π) ∈ ℂ)
249 sinneg 14876 . . . . . . . . . . . . . . . 16 ((𝑁 · π) ∈ ℂ → (sin‘-(𝑁 · π)) = -(sin‘(𝑁 · π)))
250248, 249syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘-(𝑁 · π)) = -(sin‘(𝑁 · π)))
251247, 250eqtrd 2656 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · -π)) = -(sin‘(𝑁 · π)))
252245, 251oveq12d 6668 . . . . . . . . . . . . 13 (𝜑 → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (0 − -(sin‘(𝑁 · π))))
253 0cnd 10033 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
254248sincld 14860 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · π)) ∈ ℂ)
255253, 254subnegd 10399 . . . . . . . . . . . . 13 (𝜑 → (0 − -(sin‘(𝑁 · π))) = (0 + (sin‘(𝑁 · π))))
256254addid2d 10237 . . . . . . . . . . . . 13 (𝜑 → (0 + (sin‘(𝑁 · π))) = (sin‘(𝑁 · π)))
257252, 255, 2563eqtrd 2660 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (sin‘(𝑁 · π)))
258257adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (sin‘(𝑁 · π)))
259258oveq1d 6665 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) / 𝑁) = ((sin‘(𝑁 · π)) / 𝑁))
26023nn0zd 11480 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
261 sinkpi 24271 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (sin‘(𝑁 · π)) = 0)
262260, 261syl 17 . . . . . . . . . . . . 13 (𝜑 → (sin‘(𝑁 · π)) = 0)
263262oveq1d 6665 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · π)) / 𝑁) = (0 / 𝑁))
264263adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · π)) / 𝑁) = (0 / 𝑁))
265235, 240div0d 10800 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → (0 / 𝑁) = 0)
266264, 265eqtrd 2656 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · π)) / 𝑁) = 0)
267241, 259, 2663eqtrd 2660 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = 0)
268267oveq2d 6666 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = (-1 · 0))
269240neneqd 2799 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
270269iffalsed 4097 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → if(𝑁 = 0, -π, 0) = 0)
271234, 268, 2703eqtr4d 2666 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
272231, 271syldan 487 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
273225, 272pm2.61dan 832 . . . . 5 (𝜑 → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
274189, 190, 2733eqtr2d 2662 . . . 4 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, -π, 0))
275159itgeq2dv 23548 . . . . 5 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = ∫(0(,)π)(1 · (cos‘(𝑁 · 𝑥))) d𝑥)
27697, 164, 184itgmulc2 23600 . . . . 5 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(0(,)π)(1 · (cos‘(𝑁 · 𝑥))) d𝑥)
277164, 184itgcl 23550 . . . . . . 7 (𝜑 → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 ∈ ℂ)
278277mulid2d 10058 . . . . . 6 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥)
279 simpl 473 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → 𝑁 = 0)
280279oveq1d 6665 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) = (0 · 𝑥))
281132recnd 10068 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
282281adantl 482 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → 𝑥 ∈ ℂ)
283282mul02d 10234 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (0 · 𝑥) = 0)
284280, 283eqtrd 2656 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) = 0)
285284fveq2d 6195 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = (cos‘0))
286285, 197syl6eq 2672 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = 1)
287286adantll 750 . . . . . . . . 9 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = 1)
288287itgeq2dv 23548 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = ∫(0(,)π)1 d𝑥)
289 ioovolcl 23338 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (vol‘(0(,)π)) ∈ ℝ)
2905, 1, 289mp2an 708 . . . . . . . . . 10 (vol‘(0(,)π)) ∈ ℝ
291 ax-1cn 9994 . . . . . . . . . 10 1 ∈ ℂ
292 itgconst 23585 . . . . . . . . . 10 (((0(,)π) ∈ dom vol ∧ (vol‘(0(,)π)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
293167, 290, 291, 292mp3an 1424 . . . . . . . . 9 ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π)))
294293a1i 11 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
29543mulid2i 10043 . . . . . . . . . 10 (1 · π) = π
296 volioo 23337 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π) → (vol‘(0(,)π)) = (π − 0))
2975, 1, 9, 296mp3an 1424 . . . . . . . . . . . . 13 (vol‘(0(,)π)) = (π − 0)
29843subid1i 10353 . . . . . . . . . . . . 13 (π − 0) = π
299297, 298eqtri 2644 . . . . . . . . . . . 12 (vol‘(0(,)π)) = π
300299oveq2i 6661 . . . . . . . . . . 11 (1 · (vol‘(0(,)π))) = (1 · π)
301300a1i 11 . . . . . . . . . 10 (𝑁 = 0 → (1 · (vol‘(0(,)π))) = (1 · π))
302 iftrue 4092 . . . . . . . . . 10 (𝑁 = 0 → if(𝑁 = 0, π, 0) = π)
303295, 301, 3023eqtr4a 2682 . . . . . . . . 9 (𝑁 = 0 → (1 · (vol‘(0(,)π))) = if(𝑁 = 0, π, 0))
304303adantl 482 . . . . . . . 8 ((𝜑𝑁 = 0) → (1 · (vol‘(0(,)π))) = if(𝑁 = 0, π, 0))
305288, 294, 3043eqtrd 2660 . . . . . . 7 ((𝜑𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
306262, 245oveq12d 6668 . . . . . . . . . . . . 13 (𝜑 → ((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) = (0 − 0))
307253subidd 10380 . . . . . . . . . . . . 13 (𝜑 → (0 − 0) = 0)
308306, 307eqtrd 2656 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) = 0)
309308oveq1d 6665 . . . . . . . . . . 11 (𝜑 → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = (0 / 𝑁))
310309adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = (0 / 𝑁))
311310, 265eqtrd 2656 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = 0)
3121a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → π ∈ ℝ)
3139a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → 0 ≤ π)
314235, 237, 312, 313, 240itgcoscmulx 40185 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁))
315269iffalsed 4097 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → if(𝑁 = 0, π, 0) = 0)
316311, 314, 3153eqtr4d 2666 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
317231, 316syldan 487 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
318305, 317pm2.61dan 832 . . . . . 6 (𝜑 → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
319278, 318eqtrd 2656 . . . . 5 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, π, 0))
320275, 276, 3193eqtr2d 2662 . . . 4 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, π, 0))
321274, 320oveq12d 6668 . . 3 (𝜑 → (∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) = (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)))
322321oveq1d 6665 . 2 (𝜑 → ((∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) / π) = ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π))
323222, 302oveq12d 6668 . . . . . . 7 (𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = (-π + π))
324323, 50syl6eq 2672 . . . . . 6 (𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0)
325 iffalse 4095 . . . . . . . 8 𝑁 = 0 → if(𝑁 = 0, -π, 0) = 0)
326 iffalse 4095 . . . . . . . 8 𝑁 = 0 → if(𝑁 = 0, π, 0) = 0)
327325, 326oveq12d 6668 . . . . . . 7 𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = (0 + 0))
328 00id 10211 . . . . . . 7 (0 + 0) = 0
329327, 328syl6eq 2672 . . . . . 6 𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0)
330324, 329pm2.61i 176 . . . . 5 (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0
331330oveq1i 6660 . . . 4 ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = (0 / π)
3325, 8gtneii 10149 . . . . 5 π ≠ 0
33343, 332div0i 10759 . . . 4 (0 / π) = 0
334331, 333eqtri 2644 . . 3 ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = 0
335334a1i 11 . 2 (𝜑 → ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = 0)
336188, 322, 3353eqtrd 2660 1 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  0cn0 11292  cz 11377  +crp 11832  (,)cioo 12175  [,]cicc 12178   mod cmo 12668  sincsin 14794  cosccos 14795  πcpi 14797  cnccncf 22679  volcvol 23232  𝐿1cibl 23386  citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631
This theorem is referenced by:  fouriersw  40448
  Copyright terms: Public domain W3C validator