Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem4 Structured version   Visualization version   GIF version

Theorem stirlinglem4 40294
Description: Algebraic manipulation of ((𝐵 n ) - ( B (𝑛 + 1))). It will be used in other theorems to show that 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem4.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem4.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem4.3 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
Assertion
Ref Expression
stirlinglem4 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) = (𝐽𝑁))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐽(𝑛)

Proof of Theorem stirlinglem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnre 11027 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 nnnn0 11299 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
32nn0ge0d 11354 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
41, 3ge0p1rpd 11902 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ+)
5 nnrp 11842 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
64, 5rpdivcld 11889 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
76rpsqrtcld 14150 . . . . 5 (𝑁 ∈ ℕ → (√‘((𝑁 + 1) / 𝑁)) ∈ ℝ+)
8 nnz 11399 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
96, 8rpexpcld 13032 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) / 𝑁)↑𝑁) ∈ ℝ+)
107, 9rpmulcld 11888 . . . 4 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) ∈ ℝ+)
11 epr 14936 . . . . 5 e ∈ ℝ+
1211a1i 11 . . . 4 (𝑁 ∈ ℕ → e ∈ ℝ+)
1310, 12relogdivd 24372 . . 3 (𝑁 ∈ ℕ → (log‘(((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e)) = ((log‘((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁))) − (log‘e)))
147, 9relogmuld 24371 . . . . . 6 (𝑁 ∈ ℕ → (log‘((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁))) = ((log‘(√‘((𝑁 + 1) / 𝑁))) + (log‘(((𝑁 + 1) / 𝑁)↑𝑁))))
15 logsqrt 24450 . . . . . . . 8 (((𝑁 + 1) / 𝑁) ∈ ℝ+ → (log‘(√‘((𝑁 + 1) / 𝑁))) = ((log‘((𝑁 + 1) / 𝑁)) / 2))
166, 15syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (log‘(√‘((𝑁 + 1) / 𝑁))) = ((log‘((𝑁 + 1) / 𝑁)) / 2))
17 relogexp 24342 . . . . . . . 8 ((((𝑁 + 1) / 𝑁) ∈ ℝ+𝑁 ∈ ℤ) → (log‘(((𝑁 + 1) / 𝑁)↑𝑁)) = (𝑁 · (log‘((𝑁 + 1) / 𝑁))))
186, 8, 17syl2anc 693 . . . . . . 7 (𝑁 ∈ ℕ → (log‘(((𝑁 + 1) / 𝑁)↑𝑁)) = (𝑁 · (log‘((𝑁 + 1) / 𝑁))))
1916, 18oveq12d 6668 . . . . . 6 (𝑁 ∈ ℕ → ((log‘(√‘((𝑁 + 1) / 𝑁))) + (log‘(((𝑁 + 1) / 𝑁)↑𝑁))) = (((log‘((𝑁 + 1) / 𝑁)) / 2) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))))
2014, 19eqtrd 2656 . . . . 5 (𝑁 ∈ ℕ → (log‘((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁))) = (((log‘((𝑁 + 1) / 𝑁)) / 2) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))))
21 peano2nn 11032 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
2221nncnd 11036 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
23 nncn 11028 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
24 nnne0 11053 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2522, 23, 24divcld 10801 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℂ)
2621nnne0d 11065 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0)
2722, 23, 26, 24divne0d 10817 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ≠ 0)
2825, 27logcld 24317 . . . . . . 7 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) ∈ ℂ)
29 2cnd 11093 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℂ)
30 2rp 11837 . . . . . . . . 9 2 ∈ ℝ+
3130a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
3231rpne0d 11877 . . . . . . 7 (𝑁 ∈ ℕ → 2 ≠ 0)
3328, 29, 32divrec2d 10805 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) / 𝑁)) / 2) = ((1 / 2) · (log‘((𝑁 + 1) / 𝑁))))
3433oveq1d 6665 . . . . 5 (𝑁 ∈ ℕ → (((log‘((𝑁 + 1) / 𝑁)) / 2) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))) = (((1 / 2) · (log‘((𝑁 + 1) / 𝑁))) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))))
35 1cnd 10056 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3635halfcld 11277 . . . . . . 7 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
3736, 23, 28adddird 10065 . . . . . 6 (𝑁 ∈ ℕ → (((1 / 2) + 𝑁) · (log‘((𝑁 + 1) / 𝑁))) = (((1 / 2) · (log‘((𝑁 + 1) / 𝑁))) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))))
3823, 29, 32divcan4d 10807 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 · 2) / 2) = 𝑁)
3923, 29mulcomd 10061 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 · 2) = (2 · 𝑁))
4039oveq1d 6665 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 · 2) / 2) = ((2 · 𝑁) / 2))
4138, 40eqtr3d 2658 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 = ((2 · 𝑁) / 2))
4241oveq2d 6666 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / 2) + 𝑁) = ((1 / 2) + ((2 · 𝑁) / 2)))
4329, 23mulcld 10060 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
4435, 43, 29, 32divdird 10839 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 + (2 · 𝑁)) / 2) = ((1 / 2) + ((2 · 𝑁) / 2)))
4542, 44eqtr4d 2659 . . . . . . 7 (𝑁 ∈ ℕ → ((1 / 2) + 𝑁) = ((1 + (2 · 𝑁)) / 2))
4645oveq1d 6665 . . . . . 6 (𝑁 ∈ ℕ → (((1 / 2) + 𝑁) · (log‘((𝑁 + 1) / 𝑁))) = (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))))
4737, 46eqtr3d 2658 . . . . 5 (𝑁 ∈ ℕ → (((1 / 2) · (log‘((𝑁 + 1) / 𝑁))) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))) = (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))))
4820, 34, 473eqtrd 2660 . . . 4 (𝑁 ∈ ℕ → (log‘((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁))) = (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))))
49 loge 24333 . . . . 5 (log‘e) = 1
5049a1i 11 . . . 4 (𝑁 ∈ ℕ → (log‘e) = 1)
5148, 50oveq12d 6668 . . 3 (𝑁 ∈ ℕ → ((log‘((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁))) − (log‘e)) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
5213, 51eqtrd 2656 . 2 (𝑁 ∈ ℕ → (log‘(((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e)) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
53 stirlinglem4.1 . . . . . . 7 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
5453stirlinglem2 40292 . . . . . 6 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
5554relogcld 24369 . . . . 5 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
56 nfcv 2764 . . . . . 6 𝑛𝑁
57 nfcv 2764 . . . . . . 7 𝑛log
58 nfmpt1 4747 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
5953, 58nfcxfr 2762 . . . . . . . 8 𝑛𝐴
6059, 56nffv 6198 . . . . . . 7 𝑛(𝐴𝑁)
6157, 60nffv 6198 . . . . . 6 𝑛(log‘(𝐴𝑁))
62 fveq2 6191 . . . . . . 7 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
6362fveq2d 6195 . . . . . 6 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
64 stirlinglem4.2 . . . . . 6 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
6556, 61, 63, 64fvmptf 6301 . . . . 5 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
6655, 65mpdan 702 . . . 4 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
67 nfcv 2764 . . . . . . . 8 𝑘(log‘(𝐴𝑛))
68 nfcv 2764 . . . . . . . . . 10 𝑛𝑘
6959, 68nffv 6198 . . . . . . . . 9 𝑛(𝐴𝑘)
7057, 69nffv 6198 . . . . . . . 8 𝑛(log‘(𝐴𝑘))
71 fveq2 6191 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
7271fveq2d 6195 . . . . . . . 8 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
7367, 70, 72cbvmpt 4749 . . . . . . 7 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) = (𝑘 ∈ ℕ ↦ (log‘(𝐴𝑘)))
7464, 73eqtri 2644 . . . . . 6 𝐵 = (𝑘 ∈ ℕ ↦ (log‘(𝐴𝑘)))
7574a1i 11 . . . . 5 (𝑁 ∈ ℕ → 𝐵 = (𝑘 ∈ ℕ ↦ (log‘(𝐴𝑘))))
76 simpr 477 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → 𝑘 = (𝑁 + 1))
7776fveq2d 6195 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (𝐴𝑘) = (𝐴‘(𝑁 + 1)))
7877fveq2d 6195 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (log‘(𝐴𝑘)) = (log‘(𝐴‘(𝑁 + 1))))
7953stirlinglem2 40292 . . . . . . 7 ((𝑁 + 1) ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
8021, 79syl 17 . . . . . 6 (𝑁 ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
8180relogcld 24369 . . . . 5 (𝑁 ∈ ℕ → (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ)
8275, 78, 21, 81fvmptd 6288 . . . 4 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8366, 82oveq12d 6668 . . 3 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) = ((log‘(𝐴𝑁)) − (log‘(𝐴‘(𝑁 + 1)))))
8454, 80relogdivd 24372 . . 3 (𝑁 ∈ ℕ → (log‘((𝐴𝑁) / (𝐴‘(𝑁 + 1)))) = ((log‘(𝐴𝑁)) − (log‘(𝐴‘(𝑁 + 1)))))
85 faccl 13070 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
86 nnrp 11842 . . . . . . . . 9 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℝ+)
872, 85, 863syl 18 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ+)
8831, 5rpmulcld 11888 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
8988rpsqrtcld 14150 . . . . . . . . 9 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) ∈ ℝ+)
905, 12rpdivcld 11889 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 / e) ∈ ℝ+)
9190, 8rpexpcld 13032 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) ∈ ℝ+)
9289, 91rpmulcld 11888 . . . . . . . 8 (𝑁 ∈ ℕ → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ∈ ℝ+)
9387, 92rpdivcld 11889 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
9453a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
95 simpr 477 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁)
9695fveq2d 6195 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → (!‘𝑛) = (!‘𝑁))
9795oveq2d 6666 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → (2 · 𝑛) = (2 · 𝑁))
9897fveq2d 6195 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → (√‘(2 · 𝑛)) = (√‘(2 · 𝑁)))
9995oveq1d 6665 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → (𝑛 / e) = (𝑁 / e))
10099, 95oveq12d 6668 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → ((𝑛 / e)↑𝑛) = ((𝑁 / e)↑𝑁))
10198, 100oveq12d 6668 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)))
10296, 101oveq12d 6668 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
103 simpl 473 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℕ)
10487rpcnd 11874 . . . . . . . . . 10 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℂ)
105104adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (!‘𝑁) ∈ ℂ)
106 2cnd 11093 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 2 ∈ ℂ)
107103nncnd 11036 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℂ)
108106, 107mulcld 10060 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (2 · 𝑁) ∈ ℂ)
109108sqrtcld 14176 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (√‘(2 · 𝑁)) ∈ ℂ)
110 ere 14819 . . . . . . . . . . . . . 14 e ∈ ℝ
111110recni 10052 . . . . . . . . . . . . 13 e ∈ ℂ
112111a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → e ∈ ℂ)
113 0re 10040 . . . . . . . . . . . . . 14 0 ∈ ℝ
114 epos 14935 . . . . . . . . . . . . . 14 0 < e
115113, 114gtneii 10149 . . . . . . . . . . . . 13 e ≠ 0
116115a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → e ≠ 0)
117107, 112, 116divcld 10801 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (𝑁 / e) ∈ ℂ)
118103nnnn0d 11351 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℕ0)
119117, 118expcld 13008 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((𝑁 / e)↑𝑁) ∈ ℂ)
120109, 119mulcld 10060 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ∈ ℂ)
12189rpne0d 11877 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) ≠ 0)
122121adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (√‘(2 · 𝑁)) ≠ 0)
123103nnne0d 11065 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ≠ 0)
124107, 112, 123, 116divne0d 10817 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (𝑁 / e) ≠ 0)
125103nnzd 11481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℤ)
126117, 124, 125expne0d 13014 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((𝑁 / e)↑𝑁) ≠ 0)
127109, 119, 122, 126mulne0d 10679 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ≠ 0)
128105, 120, 127divcld 10801 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℂ)
12994, 102, 103, 128fvmptd 6288 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
13093, 129mpdan 702 . . . . . 6 (𝑁 ∈ ℕ → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
131 nfcv 2764 . . . . . . . . . 10 𝑘((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
132 nfcv 2764 . . . . . . . . . 10 𝑛((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
133 fveq2 6191 . . . . . . . . . . 11 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
134 oveq2 6658 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
135134fveq2d 6195 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
136 oveq1 6657 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 / e) = (𝑘 / e))
137 id 22 . . . . . . . . . . . . 13 (𝑛 = 𝑘𝑛 = 𝑘)
138136, 137oveq12d 6668 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
139135, 138oveq12d 6668 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
140133, 139oveq12d 6668 . . . . . . . . . 10 (𝑛 = 𝑘 → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
141131, 132, 140cbvmpt 4749 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
14253, 141eqtri 2644 . . . . . . . 8 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
143142a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))))
14476fveq2d 6195 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (!‘𝑘) = (!‘(𝑁 + 1)))
14576oveq2d 6666 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (2 · 𝑘) = (2 · (𝑁 + 1)))
146145fveq2d 6195 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (√‘(2 · 𝑘)) = (√‘(2 · (𝑁 + 1))))
14776oveq1d 6665 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (𝑘 / e) = ((𝑁 + 1) / e))
148147, 76oveq12d 6668 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → ((𝑘 / e)↑𝑘) = (((𝑁 + 1) / e)↑(𝑁 + 1)))
149146, 148oveq12d 6668 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) = ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))
150144, 149oveq12d 6668 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) = ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))
15121nnnn0d 11351 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
152 faccl 13070 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ0 → (!‘(𝑁 + 1)) ∈ ℕ)
153 nnrp 11842 . . . . . . . . 9 ((!‘(𝑁 + 1)) ∈ ℕ → (!‘(𝑁 + 1)) ∈ ℝ+)
154151, 152, 1533syl 18 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) ∈ ℝ+)
15531, 4rpmulcld 11888 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) ∈ ℝ+)
156155rpsqrtcld 14150 . . . . . . . . 9 (𝑁 ∈ ℕ → (√‘(2 · (𝑁 + 1))) ∈ ℝ+)
1574, 12rpdivcld 11889 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 1) / e) ∈ ℝ+)
1588peano2zd 11485 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℤ)
159157, 158rpexpcld 13032 . . . . . . . . 9 (𝑁 ∈ ℕ → (((𝑁 + 1) / e)↑(𝑁 + 1)) ∈ ℝ+)
160156, 159rpmulcld 11888 . . . . . . . 8 (𝑁 ∈ ℕ → ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) ∈ ℝ+)
161154, 160rpdivcld 11889 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) ∈ ℝ+)
162143, 150, 21, 161fvmptd 6288 . . . . . 6 (𝑁 ∈ ℕ → (𝐴‘(𝑁 + 1)) = ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))
163130, 162oveq12d 6668 . . . . 5 (𝑁 ∈ ℕ → ((𝐴𝑁) / (𝐴‘(𝑁 + 1))) = (((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) / ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))))
164 facp1 13065 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
1652, 164syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
166165oveq1d 6665 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) = (((!‘𝑁) · (𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))
167160rpcnd 11874 . . . . . . . . 9 (𝑁 ∈ ℕ → ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) ∈ ℂ)
168160rpne0d 11877 . . . . . . . . 9 (𝑁 ∈ ℕ → ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) ≠ 0)
169104, 22, 167, 168divassd 10836 . . . . . . . 8 (𝑁 ∈ ℕ → (((!‘𝑁) · (𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) = ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))))
170166, 169eqtrd 2656 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) = ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))))
171170oveq2d 6666 . . . . . 6 (𝑁 ∈ ℕ → (((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) / ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) = (((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))))
17292rpcnd 11874 . . . . . . 7 (𝑁 ∈ ℕ → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ∈ ℂ)
17322, 167, 168divcld 10801 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) ∈ ℂ)
174104, 173mulcld 10060 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) ∈ ℂ)
17592rpne0d 11877 . . . . . . 7 (𝑁 ∈ ℕ → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ≠ 0)
17687rpne0d 11877 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘𝑁) ≠ 0)
17722, 167, 26, 168divne0d 10817 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) ≠ 0)
178104, 173, 176, 177mulne0d 10679 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) ≠ 0)
179104, 172, 174, 175, 178divdiv32d 10826 . . . . . 6 (𝑁 ∈ ℕ → (((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))) = (((!‘𝑁) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
180104, 104, 173, 176, 177divdiv1d 10832 . . . . . . . . 9 (𝑁 ∈ ℕ → (((!‘𝑁) / (!‘𝑁)) / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) = ((!‘𝑁) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))))
181180eqcomd 2628 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))) = (((!‘𝑁) / (!‘𝑁)) / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))))
182181oveq1d 6665 . . . . . . 7 (𝑁 ∈ ℕ → (((!‘𝑁) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((((!‘𝑁) / (!‘𝑁)) / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
183104, 176dividd 10799 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘𝑁) / (!‘𝑁)) = 1)
184183oveq1d 6665 . . . . . . . 8 (𝑁 ∈ ℕ → (((!‘𝑁) / (!‘𝑁)) / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) = (1 / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))))
185184oveq1d 6665 . . . . . . 7 (𝑁 ∈ ℕ → ((((!‘𝑁) / (!‘𝑁)) / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((1 / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
18622, 167, 26, 168recdivd 10818 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) = (((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)))
187186oveq1d 6665 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
188167, 22, 26divcld 10801 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) ∈ ℂ)
18989rpcnd 11874 . . . . . . . . . 10 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) ∈ ℂ)
19091rpcnd 11874 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) ∈ ℂ)
19191rpne0d 11877 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) ≠ 0)
192188, 189, 190, 121, 191divdiv1d 10832 . . . . . . . . 9 (𝑁 ∈ ℕ → (((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / (√‘(2 · 𝑁))) / ((𝑁 / e)↑𝑁)) = ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
193167, 22, 189, 26, 121divdiv32d 10826 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / (√‘(2 · 𝑁))) = ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (√‘(2 · 𝑁))) / (𝑁 + 1)))
194156rpcnd 11874 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (√‘(2 · (𝑁 + 1))) ∈ ℂ)
195159rpcnd 11874 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((𝑁 + 1) / e)↑(𝑁 + 1)) ∈ ℂ)
196194, 195, 189, 121div23d 10838 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (√‘(2 · 𝑁))) = (((√‘(2 · (𝑁 + 1))) / (√‘(2 · 𝑁))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))
19731rpred 11872 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 2 ∈ ℝ)
19831rpge0d 11876 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 0 ≤ 2)
19921nnred 11035 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
200151nn0ge0d 11354 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 0 ≤ (𝑁 + 1))
201197, 198, 199, 200sqrtmuld 14163 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘(2 · (𝑁 + 1))) = ((√‘2) · (√‘(𝑁 + 1))))
202197, 198, 1, 3sqrtmuld 14163 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
203201, 202oveq12d 6668 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((√‘(2 · (𝑁 + 1))) / (√‘(2 · 𝑁))) = (((√‘2) · (√‘(𝑁 + 1))) / ((√‘2) · (√‘𝑁))))
20429sqrtcld 14176 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘2) ∈ ℂ)
20522sqrtcld 14176 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘(𝑁 + 1)) ∈ ℂ)
20623sqrtcld 14176 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘𝑁) ∈ ℂ)
20731rpsqrtcld 14150 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (√‘2) ∈ ℝ+)
208207rpne0d 11877 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘2) ≠ 0)
2095rpsqrtcld 14150 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (√‘𝑁) ∈ ℝ+)
210209rpne0d 11877 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘𝑁) ≠ 0)
211204, 204, 205, 206, 208, 210divmuldivd 10842 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (((√‘2) / (√‘2)) · ((√‘(𝑁 + 1)) / (√‘𝑁))) = (((√‘2) · (√‘(𝑁 + 1))) / ((√‘2) · (√‘𝑁))))
212204, 208dividd 10799 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((√‘2) / (√‘2)) = 1)
213199, 200, 5sqrtdivd 14162 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (√‘((𝑁 + 1) / 𝑁)) = ((√‘(𝑁 + 1)) / (√‘𝑁)))
214213eqcomd 2628 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((√‘(𝑁 + 1)) / (√‘𝑁)) = (√‘((𝑁 + 1) / 𝑁)))
215212, 214oveq12d 6668 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (((√‘2) / (√‘2)) · ((√‘(𝑁 + 1)) / (√‘𝑁))) = (1 · (√‘((𝑁 + 1) / 𝑁))))
216203, 211, 2153eqtr2d 2662 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((√‘(2 · (𝑁 + 1))) / (√‘(2 · 𝑁))) = (1 · (√‘((𝑁 + 1) / 𝑁))))
217216oveq1d 6665 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((√‘(2 · (𝑁 + 1))) / (√‘(2 · 𝑁))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) = ((1 · (√‘((𝑁 + 1) / 𝑁))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))
21825sqrtcld 14176 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (√‘((𝑁 + 1) / 𝑁)) ∈ ℂ)
219218mulid2d 10058 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (1 · (√‘((𝑁 + 1) / 𝑁))) = (√‘((𝑁 + 1) / 𝑁)))
220219oveq1d 6665 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((1 · (√‘((𝑁 + 1) / 𝑁))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) = ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))))
221196, 217, 2203eqtrd 2660 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (√‘(2 · 𝑁))) = ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))))
222221oveq1d 6665 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (√‘(2 · 𝑁))) / (𝑁 + 1)) = (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)))
223193, 222eqtrd 2656 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / (√‘(2 · 𝑁))) = (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)))
224223oveq1d 6665 . . . . . . . . 9 (𝑁 ∈ ℕ → (((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / (√‘(2 · 𝑁))) / ((𝑁 / e)↑𝑁)) = ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((𝑁 / e)↑𝑁)))
225192, 224eqtr3d 2658 . . . . . . . 8 (𝑁 ∈ ℕ → ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((𝑁 / e)↑𝑁)))
226218, 195mulcld 10060 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) ∈ ℂ)
227226, 22, 190, 26, 191divdiv32d 10826 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((𝑁 / e)↑𝑁)) = ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / ((𝑁 / e)↑𝑁)) / (𝑁 + 1)))
228218, 195, 190, 191divassd 10836 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / ((𝑁 / e)↑𝑁)) = ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1) / e)↑(𝑁 + 1)) / ((𝑁 / e)↑𝑁))))
22912rpcnd 11874 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → e ∈ ℂ)
23012rpne0d 11877 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → e ≠ 0)
23122, 229, 230, 151expdivd 13022 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((𝑁 + 1) / e)↑(𝑁 + 1)) = (((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))))
23223, 229, 230, 2expdivd 13022 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) = ((𝑁𝑁) / (e↑𝑁)))
233231, 232oveq12d 6668 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((((𝑁 + 1) / e)↑(𝑁 + 1)) / ((𝑁 / e)↑𝑁)) = ((((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))) / ((𝑁𝑁) / (e↑𝑁))))
234233oveq2d 6666 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1) / e)↑(𝑁 + 1)) / ((𝑁 / e)↑𝑁))) = ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))) / ((𝑁𝑁) / (e↑𝑁)))))
23522, 151expcld 13008 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1)↑(𝑁 + 1)) ∈ ℂ)
236229, 151expcld 13008 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (e↑(𝑁 + 1)) ∈ ℂ)
23723, 2expcld 13008 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁𝑁) ∈ ℂ)
238229, 2expcld 13008 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (e↑𝑁) ∈ ℂ)
239229, 230, 158expne0d 13014 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (e↑(𝑁 + 1)) ≠ 0)
240229, 230, 8expne0d 13014 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (e↑𝑁) ≠ 0)
24123, 24, 8expne0d 13014 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁𝑁) ≠ 0)
242235, 236, 237, 238, 239, 240, 241divdivdivd 10848 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))) / ((𝑁𝑁) / (e↑𝑁))) = ((((𝑁 + 1)↑(𝑁 + 1)) · (e↑𝑁)) / ((e↑(𝑁 + 1)) · (𝑁𝑁))))
243235, 238mulcomd 10061 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((𝑁 + 1)↑(𝑁 + 1)) · (e↑𝑁)) = ((e↑𝑁) · ((𝑁 + 1)↑(𝑁 + 1))))
244243oveq1d 6665 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) · (e↑𝑁)) / ((e↑(𝑁 + 1)) · (𝑁𝑁))) = (((e↑𝑁) · ((𝑁 + 1)↑(𝑁 + 1))) / ((e↑(𝑁 + 1)) · (𝑁𝑁))))
245238, 236, 235, 237, 239, 241divmuldivd 10842 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((e↑𝑁) / (e↑(𝑁 + 1))) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = (((e↑𝑁) · ((𝑁 + 1)↑(𝑁 + 1))) / ((e↑(𝑁 + 1)) · (𝑁𝑁))))
246229, 2expp1d 13009 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (e↑(𝑁 + 1)) = ((e↑𝑁) · e))
247246oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((e↑𝑁) / (e↑(𝑁 + 1))) = ((e↑𝑁) / ((e↑𝑁) · e)))
248238, 238, 229, 240, 230divdiv1d 10832 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (((e↑𝑁) / (e↑𝑁)) / e) = ((e↑𝑁) / ((e↑𝑁) · e)))
249238, 240dividd 10799 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → ((e↑𝑁) / (e↑𝑁)) = 1)
250249oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (((e↑𝑁) / (e↑𝑁)) / e) = (1 / e))
251247, 248, 2503eqtr2d 2662 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((e↑𝑁) / (e↑(𝑁 + 1))) = (1 / e))
252251oveq1d 6665 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((e↑𝑁) / (e↑(𝑁 + 1))) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))))
253245, 252eqtr3d 2658 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((e↑𝑁) · ((𝑁 + 1)↑(𝑁 + 1))) / ((e↑(𝑁 + 1)) · (𝑁𝑁))) = ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))))
254242, 244, 2533eqtrd 2660 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))) / ((𝑁𝑁) / (e↑𝑁))) = ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))))
255254oveq2d 6666 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))) / ((𝑁𝑁) / (e↑𝑁)))) = ((√‘((𝑁 + 1) / 𝑁)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))))
256228, 234, 2553eqtrd 2660 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / ((𝑁 / e)↑𝑁)) = ((√‘((𝑁 + 1) / 𝑁)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))))
257256oveq1d 6665 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / ((𝑁 / e)↑𝑁)) / (𝑁 + 1)) = (((√‘((𝑁 + 1) / 𝑁)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))) / (𝑁 + 1)))
258235, 237, 241divcld 10801 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) ∈ ℂ)
25935, 229, 258, 230div32d 10824 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = (1 · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e)))
260258, 229, 230divcld 10801 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e) ∈ ℂ)
261260mulid2d 10058 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e)) = ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e))
262259, 261eqtrd 2656 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e))
263262oveq2d 6666 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))) = (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e)))
264229, 230reccld 10794 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 / e) ∈ ℂ)
265264, 258mulcld 10060 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) ∈ ℂ)
266218, 265, 22, 26div23d 10838 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))) / (𝑁 + 1)) = (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))))
267218, 22, 26divcld 10801 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) ∈ ℂ)
268267, 258, 229, 230divassd 10836 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e) = (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e)))
269263, 266, 2683eqtr4d 2666 . . . . . . . . 9 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))) / (𝑁 + 1)) = ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e))
270227, 257, 2693eqtrd 2660 . . . . . . . 8 (𝑁 ∈ ℕ → ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((𝑁 / e)↑𝑁)) = ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e))
271187, 225, 2703eqtrd 2660 . . . . . . 7 (𝑁 ∈ ℕ → ((1 / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e))
272182, 185, 2713eqtrd 2660 . . . . . 6 (𝑁 ∈ ℕ → (((!‘𝑁) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e))
273171, 179, 2723eqtrd 2660 . . . . 5 (𝑁 ∈ ℕ → (((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) / ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) = ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e))
274218, 22, 258, 26div32d 10824 . . . . . . 7 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / (𝑁 + 1))))
27522, 2expp1d 13009 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + 1)↑(𝑁 + 1)) = (((𝑁 + 1)↑𝑁) · (𝑁 + 1)))
276275oveq1d 6665 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁 + 1)) = ((((𝑁 + 1)↑𝑁) · (𝑁 + 1)) / (𝑁 + 1)))
27722, 2expcld 13008 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + 1)↑𝑁) ∈ ℂ)
278277, 22, 26divcan4d 10807 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑𝑁) · (𝑁 + 1)) / (𝑁 + 1)) = ((𝑁 + 1)↑𝑁))
279276, 278eqtrd 2656 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁 + 1)) = ((𝑁 + 1)↑𝑁))
280279oveq1d 6665 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁 + 1)) / (𝑁𝑁)) = (((𝑁 + 1)↑𝑁) / (𝑁𝑁)))
281235, 237, 22, 241, 26divdiv32d 10826 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / (𝑁 + 1)) = ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁 + 1)) / (𝑁𝑁)))
28222, 23, 24, 2expdivd 13022 . . . . . . . . 9 (𝑁 ∈ ℕ → (((𝑁 + 1) / 𝑁)↑𝑁) = (((𝑁 + 1)↑𝑁) / (𝑁𝑁)))
283280, 281, 2823eqtr4d 2666 . . . . . . . 8 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / (𝑁 + 1)) = (((𝑁 + 1) / 𝑁)↑𝑁))
284283oveq2d 6666 . . . . . . 7 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / (𝑁 + 1))) = ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)))
285274, 284eqtrd 2656 . . . . . 6 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)))
286285oveq1d 6665 . . . . 5 (𝑁 ∈ ℕ → ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e) = (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e))
287163, 273, 2863eqtrd 2660 . . . 4 (𝑁 ∈ ℕ → ((𝐴𝑁) / (𝐴‘(𝑁 + 1))) = (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e))
288287fveq2d 6195 . . 3 (𝑁 ∈ ℕ → (log‘((𝐴𝑁) / (𝐴‘(𝑁 + 1)))) = (log‘(((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e)))
28983, 84, 2883eqtr2d 2662 . 2 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) = (log‘(((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e)))
29035, 43addcld 10059 . . . . . 6 (𝑁 ∈ ℕ → (1 + (2 · 𝑁)) ∈ ℂ)
291290halfcld 11277 . . . . 5 (𝑁 ∈ ℕ → ((1 + (2 · 𝑁)) / 2) ∈ ℂ)
292291, 28mulcld 10060 . . . 4 (𝑁 ∈ ℕ → (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) ∈ ℂ)
293292, 35subcld 10392 . . 3 (𝑁 ∈ ℕ → ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ)
294 stirlinglem4.3 . . . . 5 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
295294a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) → 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)))
296 simpr 477 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁)
297296oveq2d 6666 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → (2 · 𝑛) = (2 · 𝑁))
298297oveq2d 6666 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → (1 + (2 · 𝑛)) = (1 + (2 · 𝑁)))
299298oveq1d 6665 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → ((1 + (2 · 𝑛)) / 2) = ((1 + (2 · 𝑁)) / 2))
300296oveq1d 6665 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → (𝑛 + 1) = (𝑁 + 1))
301300, 296oveq12d 6668 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → ((𝑛 + 1) / 𝑛) = ((𝑁 + 1) / 𝑁))
302301fveq2d 6195 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → (log‘((𝑛 + 1) / 𝑛)) = (log‘((𝑁 + 1) / 𝑁)))
303299, 302oveq12d 6668 . . . . 5 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → (((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) = (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))))
304303oveq1d 6665 . . . 4 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
305 simpl 473 . . . 4 ((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) → 𝑁 ∈ ℕ)
306 simpr 477 . . . 4 ((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) → ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ)
307295, 304, 305, 306fvmptd 6288 . . 3 ((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) → (𝐽𝑁) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
308293, 307mpdan 702 . 2 (𝑁 ∈ ℕ → (𝐽𝑁) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
30952, 289, 3083eqtr4d 2666 1 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) = (𝐽𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  +crp 11832  cexp 12860  !cfa 13060  csqrt 13973  eceu 14793  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  stirlinglem9  40299
  Copyright terms: Public domain W3C validator