![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashnn0n0nn | Structured version Visualization version GIF version |
Description: If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.) |
Ref | Expression |
---|---|
hashnn0n0nn | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((#‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 3921 | . . . . . . . 8 ⊢ (𝑁 ∈ 𝑉 → 𝑉 ≠ ∅) | |
2 | hashge1 13178 | . . . . . . . 8 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → 1 ≤ (#‘𝑉)) | |
3 | 1, 2 | sylan2 491 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 1 ≤ (#‘𝑉)) |
4 | simpr 477 | . . . . . . . . 9 ⊢ ((1 ≤ (#‘𝑉) ∧ (#‘𝑉) ∈ ℕ0) → (#‘𝑉) ∈ ℕ0) | |
5 | 0lt1 10550 | . . . . . . . . . . . . 13 ⊢ 0 < 1 | |
6 | 0re 10040 | . . . . . . . . . . . . . 14 ⊢ 0 ∈ ℝ | |
7 | 1re 10039 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℝ | |
8 | 6, 7 | ltnlei 10158 | . . . . . . . . . . . . 13 ⊢ (0 < 1 ↔ ¬ 1 ≤ 0) |
9 | 5, 8 | mpbi 220 | . . . . . . . . . . . 12 ⊢ ¬ 1 ≤ 0 |
10 | breq2 4657 | . . . . . . . . . . . 12 ⊢ ((#‘𝑉) = 0 → (1 ≤ (#‘𝑉) ↔ 1 ≤ 0)) | |
11 | 9, 10 | mtbiri 317 | . . . . . . . . . . 11 ⊢ ((#‘𝑉) = 0 → ¬ 1 ≤ (#‘𝑉)) |
12 | 11 | necon2ai 2823 | . . . . . . . . . 10 ⊢ (1 ≤ (#‘𝑉) → (#‘𝑉) ≠ 0) |
13 | 12 | adantr 481 | . . . . . . . . 9 ⊢ ((1 ≤ (#‘𝑉) ∧ (#‘𝑉) ∈ ℕ0) → (#‘𝑉) ≠ 0) |
14 | elnnne0 11306 | . . . . . . . . 9 ⊢ ((#‘𝑉) ∈ ℕ ↔ ((#‘𝑉) ∈ ℕ0 ∧ (#‘𝑉) ≠ 0)) | |
15 | 4, 13, 14 | sylanbrc 698 | . . . . . . . 8 ⊢ ((1 ≤ (#‘𝑉) ∧ (#‘𝑉) ∈ ℕ0) → (#‘𝑉) ∈ ℕ) |
16 | 15 | ex 450 | . . . . . . 7 ⊢ (1 ≤ (#‘𝑉) → ((#‘𝑉) ∈ ℕ0 → (#‘𝑉) ∈ ℕ)) |
17 | 3, 16 | syl 17 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → ((#‘𝑉) ∈ ℕ0 → (#‘𝑉) ∈ ℕ)) |
18 | 17 | impancom 456 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ (#‘𝑉) ∈ ℕ0) → (𝑁 ∈ 𝑉 → (#‘𝑉) ∈ ℕ)) |
19 | 18 | com12 32 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∈ 𝑊 ∧ (#‘𝑉) ∈ ℕ0) → (#‘𝑉) ∈ ℕ)) |
20 | eleq1 2689 | . . . . . 6 ⊢ ((#‘𝑉) = 𝑌 → ((#‘𝑉) ∈ ℕ0 ↔ 𝑌 ∈ ℕ0)) | |
21 | 20 | anbi2d 740 | . . . . 5 ⊢ ((#‘𝑉) = 𝑌 → ((𝑉 ∈ 𝑊 ∧ (#‘𝑉) ∈ ℕ0) ↔ (𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0))) |
22 | eleq1 2689 | . . . . 5 ⊢ ((#‘𝑉) = 𝑌 → ((#‘𝑉) ∈ ℕ ↔ 𝑌 ∈ ℕ)) | |
23 | 21, 22 | imbi12d 334 | . . . 4 ⊢ ((#‘𝑉) = 𝑌 → (((𝑉 ∈ 𝑊 ∧ (#‘𝑉) ∈ ℕ0) → (#‘𝑉) ∈ ℕ) ↔ ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))) |
24 | 19, 23 | syl5ib 234 | . . 3 ⊢ ((#‘𝑉) = 𝑌 → (𝑁 ∈ 𝑉 → ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ))) |
25 | 24 | imp 445 | . 2 ⊢ (((#‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉) → ((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) → 𝑌 ∈ ℕ)) |
26 | 25 | impcom 446 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((#‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∅c0 3915 class class class wbr 4653 ‘cfv 5888 0cc0 9936 1c1 9937 < clt 10074 ≤ cle 10075 ℕcn 11020 ℕ0cn0 11292 #chash 13117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 |
This theorem is referenced by: cusgrsize2inds 26349 |
Copyright terms: Public domain | W3C validator |