![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilslem | Structured version Visualization version GIF version |
Description: Lemma for hlhilsbase2 37234. (Contributed by Mario Carneiro, 28-Jun-2015.) |
Ref | Expression |
---|---|
hlhilslem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilslem.e | ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) |
hlhilslem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilslem.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hlhilslem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhilslem.f | ⊢ 𝐹 = Slot 𝑁 |
hlhilslem.1 | ⊢ 𝑁 ∈ ℕ |
hlhilslem.2 | ⊢ 𝑁 < 4 |
hlhilslem.c | ⊢ 𝐶 = (𝐹‘𝐸) |
Ref | Expression |
---|---|
hlhilslem | ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilslem.c | . . 3 ⊢ 𝐶 = (𝐹‘𝐸) | |
2 | hlhilslem.f | . . . . 5 ⊢ 𝐹 = Slot 𝑁 | |
3 | hlhilslem.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
4 | 2, 3 | ndxid 15883 | . . . 4 ⊢ 𝐹 = Slot (𝐹‘ndx) |
5 | 3 | nnrei 11029 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
6 | hlhilslem.2 | . . . . . 6 ⊢ 𝑁 < 4 | |
7 | 5, 6 | ltneii 10150 | . . . . 5 ⊢ 𝑁 ≠ 4 |
8 | 2, 3 | ndxarg 15882 | . . . . . 6 ⊢ (𝐹‘ndx) = 𝑁 |
9 | starvndx 16004 | . . . . . 6 ⊢ (*𝑟‘ndx) = 4 | |
10 | 8, 9 | neeq12i 2860 | . . . . 5 ⊢ ((𝐹‘ndx) ≠ (*𝑟‘ndx) ↔ 𝑁 ≠ 4) |
11 | 7, 10 | mpbir 221 | . . . 4 ⊢ (𝐹‘ndx) ≠ (*𝑟‘ndx) |
12 | 4, 11 | setsnid 15915 | . . 3 ⊢ (𝐹‘𝐸) = (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) |
13 | 1, 12 | eqtri 2644 | . 2 ⊢ 𝐶 = (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) |
14 | hlhilslem.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
15 | hlhilslem.u | . . . . 5 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
16 | hlhilslem.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | hlhilslem.e | . . . . 5 ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) | |
18 | eqid 2622 | . . . . 5 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
19 | eqid 2622 | . . . . 5 ⊢ (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) | |
20 | 14, 15, 16, 17, 18, 19 | hlhilsca 37227 | . . . 4 ⊢ (𝜑 → (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (Scalar‘𝑈)) |
21 | hlhilslem.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
22 | 20, 21 | syl6eqr 2674 | . . 3 ⊢ (𝜑 → (𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = 𝑅) |
23 | 22 | fveq2d 6195 | . 2 ⊢ (𝜑 → (𝐹‘(𝐸 sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)) = (𝐹‘𝑅)) |
24 | 13, 23 | syl5eq 2668 | 1 ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 〈cop 4183 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 < clt 10074 ℕcn 11020 4c4 11072 ndxcnx 15854 sSet csts 15855 Slot cslot 15856 *𝑟cstv 15943 Scalarcsca 15944 HLchlt 34637 LHypclh 35270 EDRingcedring 36041 HGMapchg 37175 HLHilchlh 37224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-hlhil 37225 |
This theorem is referenced by: hlhilsbase 37231 hlhilsplus 37232 hlhilsmul 37233 |
Copyright terms: Public domain | W3C validator |