![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcomi | Structured version Visualization version GIF version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
addcomi | ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | addcom 10222 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
4 | 1, 2, 3 | mp2an 708 | 1 ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℂcc 9934 + caddc 9939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 |
This theorem is referenced by: addcomli 10228 fztpval 12402 fzo0to42pr 12555 fzo1to4tp 12556 0.999...OLD 14613 ef01bndlem 14914 modxai 15772 pcoass 22824 iblitg 23535 tangtx 24257 eff1o 24295 ang180lem2 24540 log2ublem2 24674 basellem9 24815 ppiub 24929 bposlem8 25016 lgsdir2lem1 25050 lgsdir2lem2 25051 lgsdir2lem3 25052 lgsdir2lem5 25054 ax5seglem7 25815 ex-exp 27307 ipasslem10 27694 normlem2 27968 normlem3 27969 norm-ii-i 27994 normpar2i 28013 dpmul4 29622 hgt750lem2 30730 problem3 31561 problem5 31563 quad3 31564 mblfinlem3 33448 fdc 33541 stoweidlem13 40230 fourierdlem24 40348 3exp4mod41 41533 comraddi 42512 |
Copyright terms: Public domain | W3C validator |