MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscaf Structured version   Visualization version   GIF version

Theorem imasvscaf 16199
Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
imasvscaf.c ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
Assertion
Ref Expression
imasvscaf (𝜑 :(𝐾 × 𝐵)⟶𝐵)
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasvscaf.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasvscaf.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasvscaf.f . . 3 (𝜑𝐹:𝑉onto𝐵)
4 imasvscaf.r . . 3 (𝜑𝑅𝑍)
5 imasvscaf.g . . 3 𝐺 = (Scalar‘𝑅)
6 imasvscaf.k . . 3 𝐾 = (Base‘𝐺)
7 imasvscaf.q . . 3 · = ( ·𝑠𝑅)
8 imasvscaf.s . . 3 = ( ·𝑠𝑈)
9 imasvscaf.e . . 3 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
101, 2, 3, 4, 5, 6, 7, 8, 9imasvscafn 16197 . 2 (𝜑 Fn (𝐾 × 𝐵))
111, 2, 3, 4, 5, 6, 7, 8imasvsca 16180 . . 3 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
12 imasvscaf.c . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
13 fof 6115 . . . . . . . . . . . . . 14 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
143, 13syl 17 . . . . . . . . . . . . 13 (𝜑𝐹:𝑉𝐵)
1514ffvelrnda 6359 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1612, 15syldan 487 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1716ralrimivw 2967 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ∀𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1817anass1rs 849 . . . . . . . . 9 (((𝜑𝑞𝑉) ∧ 𝑝𝐾) → ∀𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1918ralrimiva 2966 . . . . . . . 8 ((𝜑𝑞𝑉) → ∀𝑝𝐾𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
20 eqid 2622 . . . . . . . . 9 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
2120fmpt2 7237 . . . . . . . 8 (∀𝑝𝐾𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵 ↔ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵)
2219, 21sylib 208 . . . . . . 7 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵)
23 fssxp 6060 . . . . . . 7 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × 𝐵))
2422, 23syl 17 . . . . . 6 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × 𝐵))
2514ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
2625snssd 4340 . . . . . . 7 ((𝜑𝑞𝑉) → {(𝐹𝑞)} ⊆ 𝐵)
27 xpss2 5229 . . . . . . 7 ({(𝐹𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵))
28 xpss1 5228 . . . . . . 7 ((𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵))
2926, 27, 283syl 18 . . . . . 6 ((𝜑𝑞𝑉) → ((𝐾 × {(𝐹𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵))
3024, 29sstrd 3613 . . . . 5 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3130ralrimiva 2966 . . . 4 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
32 iunss 4561 . . . 4 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵) ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3331, 32sylibr 224 . . 3 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3411, 33eqsstrd 3639 . 2 (𝜑 ⊆ ((𝐾 × 𝐵) × 𝐵))
35 dff2 6371 . 2 ( :(𝐾 × 𝐵)⟶𝐵 ↔ ( Fn (𝐾 × 𝐵) ∧ ⊆ ((𝐾 × 𝐵) × 𝐵)))
3610, 34, 35sylanbrc 698 1 (𝜑 :(𝐾 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574  {csn 4177   ciun 4520   × cxp 5112   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  cmpt2 6652  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  s cimas 16164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-imas 16168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator