MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injresinjlem Structured version   Visualization version   GIF version

Theorem injresinjlem 12588
Description: Lemma for injresinj 12589. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Proof shortened by AV, 14-Feb-2021.) (Revised by Thierry Arnoux, 23-Dec-2021.)
Assertion
Ref Expression
injresinjlem 𝑌 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))

Proof of Theorem injresinjlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elfznelfzo 12573 . . . . . . 7 ((𝑌 ∈ (0...𝐾) ∧ ¬ 𝑌 ∈ (1..^𝐾)) → (𝑌 = 0 ∨ 𝑌 = 𝐾))
2 fvinim0ffz 12587 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))
3 df-nel 2898 . . . . . . . . . . . . . . . . . 18 ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))
4 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23 (0 = 𝑌 → (𝐹‘0) = (𝐹𝑌))
54eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 = 0 → (𝐹‘0) = (𝐹𝑌))
65eleq1d 2686 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 = 0 → ((𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
76notbid 308 . . . . . . . . . . . . . . . . . . . 20 (𝑌 = 0 → (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
87biimpd 219 . . . . . . . . . . . . . . . . . . 19 (𝑌 = 0 → (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) → ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
9 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:(0...𝐾)⟶𝑉𝐹 Fn (0...𝐾))
10 1eluzge0 11732 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ (ℤ‘0)
11 fzoss1 12495 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ (ℤ‘0) → (1..^𝐾) ⊆ (0..^𝐾))
1210, 11mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (1..^𝐾) ⊆ (0..^𝐾))
13 fzossfz 12488 . . . . . . . . . . . . . . . . . . . . . . . 24 (0..^𝐾) ⊆ (0...𝐾)
1412, 13syl6ss 3615 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ ℕ0 → (1..^𝐾) ⊆ (0...𝐾))
15 fvelimab 6253 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 Fn (0...𝐾) ∧ (1..^𝐾) ⊆ (0...𝐾)) → ((𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌)))
169, 14, 15syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌)))
1716notbid 308 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌)))
18 ralnex 2992 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌) ↔ ¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌))
19 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑋 → (𝐹𝑧) = (𝐹𝑋))
2019eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑋 → ((𝐹𝑧) = (𝐹𝑌) ↔ (𝐹𝑋) = (𝐹𝑌)))
2120notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑋 → (¬ (𝐹𝑧) = (𝐹𝑌) ↔ ¬ (𝐹𝑋) = (𝐹𝑌)))
2221rspcva 3307 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 ∈ (1..^𝐾) ∧ ∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌)) → ¬ (𝐹𝑋) = (𝐹𝑌))
23 pm2.21 120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (¬ (𝐹𝑋) = (𝐹𝑌) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
2423a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ (𝐹𝑋) = (𝐹𝑌) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
25242a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (¬ (𝐹𝑋) = (𝐹𝑌) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
2622, 25syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ (1..^𝐾) ∧ ∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌)) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
2726expcom 451 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌) → (𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
2827com24 95 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧 ∈ (1..^𝐾) ¬ (𝐹𝑧) = (𝐹𝑌) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
2918, 28sylbir 225 . . . . . . . . . . . . . . . . . . . . . 22 (¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
3029com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (¬ ∃𝑧 ∈ (1..^𝐾)(𝐹𝑧) = (𝐹𝑌) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
3117, 30sylbid 230 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
3231com12 32 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
338, 32syl6com 37 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
343, 33sylbi 207 . . . . . . . . . . . . . . . . 17 ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
3534adantr 481 . . . . . . . . . . . . . . . 16 (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → (𝑌 = 0 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
3635com12 32 . . . . . . . . . . . . . . 15 (𝑌 = 0 → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
37 df-nel 2898 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)))
38 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 = 𝑌 → (𝐹𝐾) = (𝐹𝑌))
3938eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 = 𝐾 → (𝐹𝐾) = (𝐹𝑌))
4039eleq1d 2686 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 = 𝐾 → ((𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
4140notbid 308 . . . . . . . . . . . . . . . . . . . 20 (𝑌 = 𝐾 → (¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
4241biimpd 219 . . . . . . . . . . . . . . . . . . 19 (𝑌 = 𝐾 → (¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) → ¬ (𝐹𝑌) ∈ (𝐹 “ (1..^𝐾))))
4342, 32syl6com 37 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹𝐾) ∈ (𝐹 “ (1..^𝐾)) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4437, 43sylbi 207 . . . . . . . . . . . . . . . . 17 ((𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4544adantl 482 . . . . . . . . . . . . . . . 16 (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → (𝑌 = 𝐾 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4645com12 32 . . . . . . . . . . . . . . 15 (𝑌 = 𝐾 → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4736, 46jaoi 394 . . . . . . . . . . . . . 14 ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
4847com13 88 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾))) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
492, 48sylbid 230 . . . . . . . . . . . 12 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
5049com14 96 . . . . . . . . . . 11 (𝑋 ∈ (0...𝐾) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
5150com12 32 . . . . . . . . . 10 (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (𝑋 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
5251com15 101 . . . . . . . . 9 (𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
53 elfznelfzo 12573 . . . . . . . . . . 11 ((𝑋 ∈ (0...𝐾) ∧ ¬ 𝑋 ∈ (1..^𝐾)) → (𝑋 = 0 ∨ 𝑋 = 𝐾))
54 eqtr3 2643 . . . . . . . . . . . . . 14 ((𝑋 = 0 ∧ 𝑌 = 0) → 𝑋 = 𝑌)
55 2a1 28 . . . . . . . . . . . . . . 15 (𝑋 = 𝑌 → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
56552a1d 26 . . . . . . . . . . . . . 14 (𝑋 = 𝑌 → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
5754, 56syl 17 . . . . . . . . . . . . 13 ((𝑋 = 0 ∧ 𝑌 = 0) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
585adantl 482 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝐾𝑌 = 0) → (𝐹‘0) = (𝐹𝑌))
59 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝐾 = 𝑋 → (𝐹𝐾) = (𝐹𝑋))
6059eqcoms 2630 . . . . . . . . . . . . . . . . 17 (𝑋 = 𝐾 → (𝐹𝐾) = (𝐹𝑋))
6160adantr 481 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝐾𝑌 = 0) → (𝐹𝐾) = (𝐹𝑋))
6258, 61neeq12d 2855 . . . . . . . . . . . . . . 15 ((𝑋 = 𝐾𝑌 = 0) → ((𝐹‘0) ≠ (𝐹𝐾) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
63 df-ne 2795 . . . . . . . . . . . . . . . 16 ((𝐹𝑌) ≠ (𝐹𝑋) ↔ ¬ (𝐹𝑌) = (𝐹𝑋))
64 pm2.24 121 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑌) = (𝐹𝑋) → (¬ (𝐹𝑌) = (𝐹𝑋) → 𝑋 = 𝑌))
6564eqcoms 2630 . . . . . . . . . . . . . . . . 17 ((𝐹𝑋) = (𝐹𝑌) → (¬ (𝐹𝑌) = (𝐹𝑋) → 𝑋 = 𝑌))
6665com12 32 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑌) = (𝐹𝑋) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
6763, 66sylbi 207 . . . . . . . . . . . . . . 15 ((𝐹𝑌) ≠ (𝐹𝑋) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
6862, 67syl6bi 243 . . . . . . . . . . . . . 14 ((𝑋 = 𝐾𝑌 = 0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
69682a1d 26 . . . . . . . . . . . . 13 ((𝑋 = 𝐾𝑌 = 0) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
70 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (0 = 𝑋 → (𝐹‘0) = (𝐹𝑋))
7170eqcoms 2630 . . . . . . . . . . . . . . . . 17 (𝑋 = 0 → (𝐹‘0) = (𝐹𝑋))
7271adantr 481 . . . . . . . . . . . . . . . 16 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → (𝐹‘0) = (𝐹𝑋))
7339adantl 482 . . . . . . . . . . . . . . . 16 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → (𝐹𝐾) = (𝐹𝑌))
7472, 73neeq12d 2855 . . . . . . . . . . . . . . 15 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
75 df-ne 2795 . . . . . . . . . . . . . . . 16 ((𝐹𝑋) ≠ (𝐹𝑌) ↔ ¬ (𝐹𝑋) = (𝐹𝑌))
7675, 23sylbi 207 . . . . . . . . . . . . . . 15 ((𝐹𝑋) ≠ (𝐹𝑌) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
7774, 76syl6bi 243 . . . . . . . . . . . . . 14 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
78772a1d 26 . . . . . . . . . . . . 13 ((𝑋 = 0 ∧ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
79 eqtr3 2643 . . . . . . . . . . . . . 14 ((𝑋 = 𝐾𝑌 = 𝐾) → 𝑋 = 𝑌)
8079, 56syl 17 . . . . . . . . . . . . 13 ((𝑋 = 𝐾𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
8157, 69, 78, 80ccase 987 . . . . . . . . . . . 12 (((𝑋 = 0 ∨ 𝑋 = 𝐾) ∧ (𝑌 = 0 ∨ 𝑌 = 𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))
8281ex 450 . . . . . . . . . . 11 ((𝑋 = 0 ∨ 𝑋 = 𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8353, 82syl 17 . . . . . . . . . 10 ((𝑋 ∈ (0...𝐾) ∧ ¬ 𝑋 ∈ (1..^𝐾)) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8483expcom 451 . . . . . . . . 9 𝑋 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
8552, 84pm2.61i 176 . . . . . . . 8 (𝑋 ∈ (0...𝐾) → ((𝑌 = 0 ∨ 𝑌 = 𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8685com12 32 . . . . . . 7 ((𝑌 = 0 ∨ 𝑌 = 𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
871, 86syl 17 . . . . . 6 ((𝑌 ∈ (0...𝐾) ∧ ¬ 𝑌 ∈ (1..^𝐾)) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
8887ex 450 . . . . 5 (𝑌 ∈ (0...𝐾) → (¬ 𝑌 ∈ (1..^𝐾) → (𝑋 ∈ (0...𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
8988com23 86 . . . 4 (𝑌 ∈ (0...𝐾) → (𝑋 ∈ (0...𝐾) → (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))))))
9089impcom 446 . . 3 ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
9190com12 32 . 2 𝑌 ∈ (1..^𝐾) → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
9291com25 99 1 𝑌 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wnel 2897  wral 2912  wrex 2913  cin 3573  wss 3574  c0 3915  {cpr 4179  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  0cn0 11292  cuz 11687  ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  injresinj  12589
  Copyright terms: Public domain W3C validator