MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfznelfzo Structured version   Visualization version   GIF version

Theorem elfznelfzo 12573
Description: A value in a finite set of sequential integers is a border value if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by Thierry Arnoux, 22-Dec-2021.)
Assertion
Ref Expression
elfznelfzo ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))

Proof of Theorem elfznelfzo
StepHypRef Expression
1 elfz2nn0 12431 . . 3 (𝑀 ∈ (0...𝐾) ↔ (𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾))
2 nn0z 11400 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 nn0z 11400 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
42, 3anim12i 590 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ))
543adant3 1081 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ))
6 elfzom1b 12567 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ (1..^𝐾) ↔ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
75, 6syl 17 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ (1..^𝐾) ↔ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
87notbid 308 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ ¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
9 elfzo0 12508 . . . . . . 7 ((𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)))
109a1i 11 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → ((𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1))))
1110notbid 308 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1))))
12 3ianor 1055 . . . . . . 7 (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) ↔ (¬ (𝑀 − 1) ∈ ℕ0 ∨ ¬ (𝐾 − 1) ∈ ℕ ∨ ¬ (𝑀 − 1) < (𝐾 − 1)))
13 elnnne0 11306 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0𝑀 ≠ 0))
14 df-ne 2795 . . . . . . . . . . . . . . . . . 18 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
1514anbi2i 730 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑀 ≠ 0) ↔ (𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0))
1613, 15bitr2i 265 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0) ↔ 𝑀 ∈ ℕ)
17 nnm1nn0 11334 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
1816, 17sylbi 207 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0) → (𝑀 − 1) ∈ ℕ0)
1918ex 450 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (¬ 𝑀 = 0 → (𝑀 − 1) ∈ ℕ0))
2019con1d 139 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (¬ (𝑀 − 1) ∈ ℕ0𝑀 = 0))
2120imp 445 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0 ∧ ¬ (𝑀 − 1) ∈ ℕ0) → 𝑀 = 0)
2221orcd 407 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ ¬ (𝑀 − 1) ∈ ℕ0) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
2322ex 450 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (¬ (𝑀 − 1) ∈ ℕ0 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
24233ad2ant1 1082 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ ℕ0 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
2524com12 32 . . . . . . . 8 (¬ (𝑀 − 1) ∈ ℕ0 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
26 ioran 511 . . . . . . . . . . . 12 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
27 nn1m1nn 11040 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (𝑀 = 1 ∨ (𝑀 − 1) ∈ ℕ))
28 df-ne 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀𝐾 ↔ ¬ 𝑀 = 𝐾)
29 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
3029ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝑀 ∈ ℝ)
31 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
3231adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝐾 ∈ ℝ)
3332adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝐾 ∈ ℝ)
34 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝑀𝐾)
3530, 33, 34leltned 10190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀 < 𝐾𝐾𝑀))
36 necom 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑀𝐾𝐾𝑀)
3735, 36syl6rbbr 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀𝐾𝑀 < 𝐾))
3837adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀𝐾𝑀 < 𝐾))
39 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑀 = 1 → (𝑀 < 𝐾 ↔ 1 < 𝐾))
4039biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑀 = 1 ∧ 𝑀 < 𝐾) → 1 < 𝐾)
41 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 1 ∈ ℝ)
4241, 32, 41ltsub1d 10636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (1 < 𝐾 ↔ (1 − 1) < (𝐾 − 1)))
43 1m1e0 11089 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (1 − 1) = 0
4443breq1i 4660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((1 − 1) < (𝐾 − 1) ↔ 0 < (𝐾 − 1))
45 1zzd 11408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐾 ∈ ℕ0 → 1 ∈ ℤ)
463, 45zsubcld 11487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℤ)
4746adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℤ)
4847adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → (𝐾 − 1) ∈ ℤ)
49 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → 0 < (𝐾 − 1))
50 elnnz 11387 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐾 − 1) ∈ ℕ ↔ ((𝐾 − 1) ∈ ℤ ∧ 0 < (𝐾 − 1)))
5148, 49, 50sylanbrc 698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → (𝐾 − 1) ∈ ℕ)
5251ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0 < (𝐾 − 1) → (𝐾 − 1) ∈ ℕ))
5344, 52syl5bi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((1 − 1) < (𝐾 − 1) → (𝐾 − 1) ∈ ℕ))
5442, 53sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (1 < 𝐾 → (𝐾 − 1) ∈ ℕ))
5540, 54syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑀 = 1 ∧ 𝑀 < 𝐾) → (𝐾 − 1) ∈ ℕ))
5655expd 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 = 1 → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ)))
5756adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀 = 1 → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ)))
5857imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ))
5938, 58sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀𝐾 → (𝐾 − 1) ∈ ℕ))
6059exp31 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀𝐾 → (𝑀 = 1 → (𝑀𝐾 → (𝐾 − 1) ∈ ℕ))))
6160com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀𝐾 → (𝑀𝐾 → (𝑀 = 1 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6228, 61sylbir 225 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑀 = 𝐾 → (𝑀𝐾 → (𝑀 = 1 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6362com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑀 = 𝐾 → (𝑀 = 1 → (𝑀𝐾 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6463com14 96 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 = 1 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
6564ex 450 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝑀 = 1 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6665com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀𝐾 → (𝑀 ∈ ℕ0 → (𝑀 = 1 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6766com13 88 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 = 1 → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6829ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
6931adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
70 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℝ)
7168, 69, 70lesub1d 10634 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾 ↔ (𝑀 − 1) ≤ (𝐾 − 1)))
723ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 𝐾 ∈ ℤ)
73 1zzd 11408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 1 ∈ ℤ)
7472, 73zsubcld 11487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 − 1) ∈ ℤ)
75 nngt0 11049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 − 1) ∈ ℕ → 0 < (𝑀 − 1))
76 0red 10041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 0 ∈ ℝ)
77 peano2rem 10348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
7829, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑀 ∈ ℕ0 → (𝑀 − 1) ∈ ℝ)
7978adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 − 1) ∈ ℝ)
80 peano2rem 10348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
8131, 80syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℝ)
8281adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐾 − 1) ∈ ℝ)
83 ltletr 10129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((0 ∈ ℝ ∧ (𝑀 − 1) ∈ ℝ ∧ (𝐾 − 1) ∈ ℝ) → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1)))
8476, 79, 82, 83syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1)))
8584ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1))))
8685com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → 0 < (𝐾 − 1))))
8786ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 < (𝑀 − 1) → ((𝑀 − 1) ≤ (𝐾 − 1) → (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → 0 < (𝐾 − 1)))))
8887com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0 < (𝑀 − 1) → (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑀 − 1) ≤ (𝐾 − 1) → 0 < (𝐾 − 1)))))
8975, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 − 1) ∈ ℕ → (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑀 − 1) ≤ (𝐾 − 1) → 0 < (𝐾 − 1)))))
9089imp41 619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1))
9174, 90, 50sylanbrc 698 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 − 1) ∈ ℕ)
9291a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))
9392ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑀 − 1) ≤ (𝐾 − 1) → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
9471, 93sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
9594ex 450 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
9695com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
9796ex 450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 − 1) ∈ ℕ → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
9867, 97jaoi 394 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 = 1 ∨ (𝑀 − 1) ∈ ℕ) → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
9927, 98syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
10013, 99sylbir 225 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑀 ≠ 0) → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
101100ex 450 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝑀 ≠ 0 → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))))
102101pm2.43a 54 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (𝑀 ≠ 0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
103102com24 95 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
1041033imp 1256 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
105104com3l 89 . . . . . . . . . . . . . 14 (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ)))
10614, 105sylbir 225 . . . . . . . . . . . . 13 𝑀 = 0 → (¬ 𝑀 = 𝐾 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ)))
107106imp 445 . . . . . . . . . . . 12 ((¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ))
10826, 107sylbi 207 . . . . . . . . . . 11 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ))
109108com12 32 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) → (𝐾 − 1) ∈ ℕ))
110109con1d 139 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝐾 − 1) ∈ ℕ → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
111110com12 32 . . . . . . . 8 (¬ (𝐾 − 1) ∈ ℕ → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
11229adantr 481 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
11331adantl 482 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
114 1red 10055 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 1 ∈ ℝ)
115112, 113, 1143jca 1242 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ))
1161153adant3 1081 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ))
117 ltsub1 10524 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀 − 1) < (𝐾 − 1)))
118116, 117syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 < 𝐾 ↔ (𝑀 − 1) < (𝐾 − 1)))
119118bicomd 213 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → ((𝑀 − 1) < (𝐾 − 1) ↔ 𝑀 < 𝐾))
120119notbid 308 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) < (𝐾 − 1) ↔ ¬ 𝑀 < 𝐾))
121 eqlelt 10125 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 = 𝐾 ↔ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)))
12229, 31, 121syl2an 494 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 = 𝐾 ↔ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)))
123122biimpar 502 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)) → 𝑀 = 𝐾)
124123olcd 408 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
125124exp43 640 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (¬ 𝑀 < 𝐾 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))))
1261253imp 1256 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 < 𝐾 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
127120, 126sylbid 230 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) < (𝐾 − 1) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
128127com12 32 . . . . . . . 8 (¬ (𝑀 − 1) < (𝐾 − 1) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
12925, 111, 1283jaoi 1391 . . . . . . 7 ((¬ (𝑀 − 1) ∈ ℕ0 ∨ ¬ (𝐾 − 1) ∈ ℕ ∨ ¬ (𝑀 − 1) < (𝐾 − 1)) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
13012, 129sylbi 207 . . . . . 6 (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
131130com12 32 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
13211, 131sylbid 230 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
1338, 132sylbid 230 . . 3 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
1341, 133sylbi 207 . 2 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
135134imp 445 1 ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  elfznelfzob  12574  injresinjlem  12588
  Copyright terms: Public domain W3C validator