![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipasslem4 | Structured version Visualization version GIF version |
Description: Lemma for ipassi 27696. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
ipasslem4 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnrecre 11057 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) | |
2 | 1 | recnd 10068 | . . . 4 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℂ) |
3 | ip1i.9 | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
4 | 3 | phnvi 27671 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
5 | ip1i.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | ip1i.4 | . . . . . 6 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
7 | 5, 6 | nvscl 27481 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
8 | 4, 7 | mp3an1 1411 | . . . 4 ⊢ (((1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
9 | 2, 8 | sylan 488 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
10 | ipasslem1.b | . . . 4 ⊢ 𝐵 ∈ 𝑋 | |
11 | ip1i.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
12 | 5, 11 | dipcl 27567 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
13 | 4, 10, 12 | mp3an13 1415 | . . 3 ⊢ (((1 / 𝑁)𝑆𝐴) ∈ 𝑋 → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
14 | 9, 13 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
15 | 5, 11 | dipcl 27567 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
16 | 4, 10, 15 | mp3an13 1415 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴𝑃𝐵) ∈ ℂ) |
17 | mulcl 10020 | . . 3 ⊢ (((1 / 𝑁) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ) | |
18 | 2, 16, 17 | syl2an 494 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ) |
19 | nncn 11028 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
20 | 19 | adantr 481 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ∈ ℂ) |
21 | nnne0 11053 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
22 | 21 | adantr 481 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ≠ 0) |
23 | 19, 21 | recidd 10796 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 · (1 / 𝑁)) = 1) |
24 | 23 | oveq1d 6665 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (1 · (𝐴𝑃𝐵))) |
25 | 16 | mulid2d 10058 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵)) |
26 | 24, 25 | sylan9eq 2676 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵)) |
27 | 23 | oveq1d 6665 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (1𝑆𝐴)) |
28 | 5, 6 | nvsid 27482 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
29 | 4, 28 | mpan 706 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (1𝑆𝐴) = 𝐴) |
30 | 27, 29 | sylan9eq 2676 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = 𝐴) |
31 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (1 / 𝑁) ∈ ℂ) |
32 | simpr 477 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
33 | 5, 6 | nvsass 27483 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
34 | 4, 33 | mpan 706 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
35 | 20, 31, 32, 34 | syl3anc 1326 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
36 | 30, 35 | eqtr3d 2658 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐴 = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
37 | 36 | oveq1d 6665 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐵) = ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵)) |
38 | nnnn0 11299 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
39 | 38 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ∈ ℕ0) |
40 | ip1i.2 | . . . . . 6 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
41 | 5, 40, 6, 11, 3, 10 | ipasslem1 27686 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
42 | 39, 9, 41 | syl2anc 693 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
43 | 26, 37, 42 | 3eqtrd 2660 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
44 | 16 | adantl 482 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
45 | 20, 31, 44 | mulassd 10063 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵)))) |
46 | 43, 45 | eqtr3d 2658 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵)))) |
47 | 14, 18, 20, 22, 46 | mulcanad 10662 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 0cc0 9936 1c1 9937 · cmul 9941 / cdiv 10684 ℕcn 11020 ℕ0cn0 11292 NrmCVeccnv 27439 +𝑣 cpv 27440 BaseSetcba 27441 ·𝑠OLD cns 27442 ·𝑖OLDcdip 27555 CPreHilOLDccphlo 27667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-grpo 27347 df-gid 27348 df-ginv 27349 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-nmcv 27455 df-dip 27556 df-ph 27668 |
This theorem is referenced by: ipasslem5 27690 |
Copyright terms: Public domain | W3C validator |