![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > irrapxlem6 | Structured version Visualization version GIF version |
Description: Lemma for irrapx1 37392. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
irrapxlem6 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 792 | . . . 4 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ ℚ) | |
2 | simpr1 1067 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 0 < 𝑎) | |
3 | simpr3 1069 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)) | |
4 | 2, 3 | jca 554 | . . . 4 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) |
5 | breq2 4657 | . . . . . 6 ⊢ (𝑦 = 𝑎 → (0 < 𝑦 ↔ 0 < 𝑎)) | |
6 | oveq1 6657 | . . . . . . . 8 ⊢ (𝑦 = 𝑎 → (𝑦 − 𝐴) = (𝑎 − 𝐴)) | |
7 | 6 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → (abs‘(𝑦 − 𝐴)) = (abs‘(𝑎 − 𝐴))) |
8 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑦 = 𝑎 → (denom‘𝑦) = (denom‘𝑎)) | |
9 | 8 | oveq1d 6665 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → ((denom‘𝑦)↑-2) = ((denom‘𝑎)↑-2)) |
10 | 7, 9 | breq12d 4666 | . . . . . 6 ⊢ (𝑦 = 𝑎 → ((abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2) ↔ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) |
11 | 5, 10 | anbi12d 747 | . . . . 5 ⊢ (𝑦 = 𝑎 → ((0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)))) |
12 | 11 | elrab 3363 | . . . 4 ⊢ (𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)))) |
13 | 1, 4, 12 | sylanbrc 698 | . . 3 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))}) |
14 | simpr2 1068 | . . 3 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎 − 𝐴)) < 𝐵) | |
15 | oveq1 6657 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (𝑥 − 𝐴) = (𝑎 − 𝐴)) | |
16 | 15 | fveq2d 6195 | . . . . 5 ⊢ (𝑥 = 𝑎 → (abs‘(𝑥 − 𝐴)) = (abs‘(𝑎 − 𝐴))) |
17 | 16 | breq1d 4663 | . . . 4 ⊢ (𝑥 = 𝑎 → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ (abs‘(𝑎 − 𝐴)) < 𝐵)) |
18 | 17 | rspcev 3309 | . . 3 ⊢ ((𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∧ (abs‘(𝑎 − 𝐴)) < 𝐵) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
19 | 13, 14, 18 | syl2anc 693 | . 2 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
20 | irrapxlem5 37390 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℚ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) | |
21 | 19, 20 | r19.29a 3078 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 ∃wrex 2913 {crab 2916 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 0cc0 9936 < clt 10074 − cmin 10266 -cneg 10267 2c2 11070 ℚcq 11788 ℝ+crp 11832 ↑cexp 12860 abscabs 13974 denomcdenom 15442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-ico 12181 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-numer 15443 df-denom 15444 |
This theorem is referenced by: irrapx1 37392 |
Copyright terms: Public domain | W3C validator |