Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem6 Structured version   Visualization version   Unicode version

Theorem irrapxlem6 37391
Description: Lemma for irrapx1 37392. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem6  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. x  e.  { y  e.  QQ  |  ( 0  < 
y  /\  ( abs `  ( y  -  A
) )  <  (
(denom `  y ) ^ -u 2 ) ) }  ( abs `  (
x  -  A ) )  <  B )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem irrapxlem6
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simplr 792 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  a  e.  QQ )  /\  ( 0  < 
a  /\  ( abs `  ( a  -  A
) )  <  B  /\  ( abs `  (
a  -  A ) )  <  ( (denom `  a ) ^ -u 2
) ) )  -> 
a  e.  QQ )
2 simpr1 1067 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  a  e.  QQ )  /\  ( 0  < 
a  /\  ( abs `  ( a  -  A
) )  <  B  /\  ( abs `  (
a  -  A ) )  <  ( (denom `  a ) ^ -u 2
) ) )  -> 
0  <  a )
3 simpr3 1069 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  a  e.  QQ )  /\  ( 0  < 
a  /\  ( abs `  ( a  -  A
) )  <  B  /\  ( abs `  (
a  -  A ) )  <  ( (denom `  a ) ^ -u 2
) ) )  -> 
( abs `  (
a  -  A ) )  <  ( (denom `  a ) ^ -u 2
) )
42, 3jca 554 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  a  e.  QQ )  /\  ( 0  < 
a  /\  ( abs `  ( a  -  A
) )  <  B  /\  ( abs `  (
a  -  A ) )  <  ( (denom `  a ) ^ -u 2
) ) )  -> 
( 0  <  a  /\  ( abs `  (
a  -  A ) )  <  ( (denom `  a ) ^ -u 2
) ) )
5 breq2 4657 . . . . . 6  |-  ( y  =  a  ->  (
0  <  y  <->  0  <  a ) )
6 oveq1 6657 . . . . . . . 8  |-  ( y  =  a  ->  (
y  -  A )  =  ( a  -  A ) )
76fveq2d 6195 . . . . . . 7  |-  ( y  =  a  ->  ( abs `  ( y  -  A ) )  =  ( abs `  (
a  -  A ) ) )
8 fveq2 6191 . . . . . . . 8  |-  ( y  =  a  ->  (denom `  y )  =  (denom `  a ) )
98oveq1d 6665 . . . . . . 7  |-  ( y  =  a  ->  (
(denom `  y ) ^ -u 2 )  =  ( (denom `  a
) ^ -u 2
) )
107, 9breq12d 4666 . . . . . 6  |-  ( y  =  a  ->  (
( abs `  (
y  -  A ) )  <  ( (denom `  y ) ^ -u 2
)  <->  ( abs `  (
a  -  A ) )  <  ( (denom `  a ) ^ -u 2
) ) )
115, 10anbi12d 747 . . . . 5  |-  ( y  =  a  ->  (
( 0  <  y  /\  ( abs `  (
y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) )  <->  ( 0  <  a  /\  ( abs `  ( a  -  A ) )  < 
( (denom `  a
) ^ -u 2
) ) ) )
1211elrab 3363 . . . 4  |-  ( a  e.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  < 
( (denom `  y
) ^ -u 2
) ) }  <->  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  A ) )  < 
( (denom `  a
) ^ -u 2
) ) ) )
131, 4, 12sylanbrc 698 . . 3  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  a  e.  QQ )  /\  ( 0  < 
a  /\  ( abs `  ( a  -  A
) )  <  B  /\  ( abs `  (
a  -  A ) )  <  ( (denom `  a ) ^ -u 2
) ) )  -> 
a  e.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) } )
14 simpr2 1068 . . 3  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  a  e.  QQ )  /\  ( 0  < 
a  /\  ( abs `  ( a  -  A
) )  <  B  /\  ( abs `  (
a  -  A ) )  <  ( (denom `  a ) ^ -u 2
) ) )  -> 
( abs `  (
a  -  A ) )  <  B )
15 oveq1 6657 . . . . . 6  |-  ( x  =  a  ->  (
x  -  A )  =  ( a  -  A ) )
1615fveq2d 6195 . . . . 5  |-  ( x  =  a  ->  ( abs `  ( x  -  A ) )  =  ( abs `  (
a  -  A ) ) )
1716breq1d 4663 . . . 4  |-  ( x  =  a  ->  (
( abs `  (
x  -  A ) )  <  B  <->  ( abs `  ( a  -  A
) )  <  B
) )
1817rspcev 3309 . . 3  |-  ( ( a  e.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  /\  ( abs `  ( a  -  A ) )  <  B )  ->  E. x  e.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  ( abs `  ( x  -  A ) )  < 
B )
1913, 14, 18syl2anc 693 . 2  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR+ )  /\  a  e.  QQ )  /\  ( 0  < 
a  /\  ( abs `  ( a  -  A
) )  <  B  /\  ( abs `  (
a  -  A ) )  <  ( (denom `  a ) ^ -u 2
) ) )  ->  E. x  e.  { y  e.  QQ  |  ( 0  <  y  /\  ( abs `  ( y  -  A ) )  <  ( (denom `  y ) ^ -u 2
) ) }  ( abs `  ( x  -  A ) )  < 
B )
20 irrapxlem5 37390 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. a  e.  QQ  ( 0  < 
a  /\  ( abs `  ( a  -  A
) )  <  B  /\  ( abs `  (
a  -  A ) )  <  ( (denom `  a ) ^ -u 2
) ) )
2119, 20r19.29a 3078 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  E. x  e.  { y  e.  QQ  |  ( 0  < 
y  /\  ( abs `  ( y  -  A
) )  <  (
(denom `  y ) ^ -u 2 ) ) }  ( abs `  (
x  -  A ) )  <  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990   E.wrex 2913   {crab 2916   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936    < clt 10074    - cmin 10266   -ucneg 10267   2c2 11070   QQcq 11788   RR+crp 11832   ^cexp 12860   abscabs 13974  denomcdenom 15442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444
This theorem is referenced by:  irrapx1  37392
  Copyright terms: Public domain W3C validator