Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd3 Structured version   Visualization version   Unicode version

Theorem isbnd3 33583
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
isbnd3  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) ) )
Distinct variable groups:    x, M    x, X

Proof of Theorem isbnd3
Dummy variables  r 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndmet 33580 . . 3  |-  ( M  e.  ( Bnd `  X
)  ->  M  e.  ( Met `  X ) )
2 0re 10040 . . . . . 6  |-  0  e.  RR
32ne0ii 3923 . . . . 5  |-  RR  =/=  (/)
4 metf 22135 . . . . . . . . . 10  |-  ( M  e.  ( Met `  X
)  ->  M :
( X  X.  X
) --> RR )
5 ffn 6045 . . . . . . . . . 10  |-  ( M : ( X  X.  X ) --> RR  ->  M  Fn  ( X  X.  X ) )
64, 5syl 17 . . . . . . . . 9  |-  ( M  e.  ( Met `  X
)  ->  M  Fn  ( X  X.  X
) )
71, 6syl 17 . . . . . . . 8  |-  ( M  e.  ( Bnd `  X
)  ->  M  Fn  ( X  X.  X
) )
87ad2antrr 762 . . . . . . 7  |-  ( ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  /\  x  e.  RR )  ->  M  Fn  ( X  X.  X ) )
91, 4syl 17 . . . . . . . . . . . 12  |-  ( M  e.  ( Bnd `  X
)  ->  M :
( X  X.  X
) --> RR )
10 fdm 6051 . . . . . . . . . . . 12  |-  ( M : ( X  X.  X ) --> RR  ->  dom 
M  =  ( X  X.  X ) )
119, 10syl 17 . . . . . . . . . . 11  |-  ( M  e.  ( Bnd `  X
)  ->  dom  M  =  ( X  X.  X
) )
12 xpeq2 5129 . . . . . . . . . . . 12  |-  ( X  =  (/)  ->  ( X  X.  X )  =  ( X  X.  (/) ) )
13 xp0 5552 . . . . . . . . . . . 12  |-  ( X  X.  (/) )  =  (/)
1412, 13syl6eq 2672 . . . . . . . . . . 11  |-  ( X  =  (/)  ->  ( X  X.  X )  =  (/) )
1511, 14sylan9eq 2676 . . . . . . . . . 10  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  ->  dom  M  =  (/) )
1615adantr 481 . . . . . . . . 9  |-  ( ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  /\  x  e.  RR )  ->  dom  M  =  (/) )
17 dm0rn0 5342 . . . . . . . . 9  |-  ( dom 
M  =  (/)  <->  ran  M  =  (/) )
1816, 17sylib 208 . . . . . . . 8  |-  ( ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  /\  x  e.  RR )  ->  ran  M  =  (/) )
19 0ss 3972 . . . . . . . 8  |-  (/)  C_  (
0 [,] x )
2018, 19syl6eqss 3655 . . . . . . 7  |-  ( ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  /\  x  e.  RR )  ->  ran  M  C_  (
0 [,] x ) )
21 df-f 5892 . . . . . . 7  |-  ( M : ( X  X.  X ) --> ( 0 [,] x )  <->  ( M  Fn  ( X  X.  X
)  /\  ran  M  C_  ( 0 [,] x
) ) )
228, 20, 21sylanbrc 698 . . . . . 6  |-  ( ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  /\  x  e.  RR )  ->  M : ( X  X.  X ) --> ( 0 [,] x
) )
2322ralrimiva 2966 . . . . 5  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  ->  A. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) )
24 r19.2z 4060 . . . . 5  |-  ( ( RR  =/=  (/)  /\  A. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) )
253, 23, 24sylancr 695 . . . 4  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =  (/) )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) )
26 isbnd2 33582 . . . . . 6  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =/=  (/) )  <->  ( M  e.  ( *Met `  X )  /\  E. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M ) r ) ) )
2726simprbi 480 . . . . 5  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =/=  (/) )  ->  E. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M
) r ) )
28 2re 11090 . . . . . . . . . . 11  |-  2  e.  RR
29 simprlr 803 . . . . . . . . . . . 12  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  r  e.  RR+ )
3029rpred 11872 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  r  e.  RR )
31 remulcl 10021 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  r  e.  RR )  ->  ( 2  x.  r
)  e.  RR )
3228, 30, 31sylancr 695 . . . . . . . . . 10  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  ( 2  x.  r )  e.  RR )
336adantr 481 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  M  Fn  ( X  X.  X
) )
34 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  ->  M  e.  ( Met `  X ) )
35 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  ->  x  e.  X )
36 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
z  e.  X )
37 metcl 22137 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ( Met `  X )  /\  x  e.  X  /\  z  e.  X )  ->  (
x M z )  e.  RR )
3834, 35, 36, 37syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x M z )  e.  RR )
39 metge0 22150 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ( Met `  X )  /\  x  e.  X  /\  z  e.  X )  ->  0  <_  ( x M z ) )
4034, 35, 36, 39syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
0  <_  ( x M z ) )
4132adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( 2  x.  r
)  e.  RR )
42 simprll 802 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  y  e.  X )
4342adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
y  e.  X )
44 metcl 22137 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X  /\  x  e.  X )  ->  (
y M x )  e.  RR )
4534, 43, 35, 44syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( y M x )  e.  RR )
46 metcl 22137 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X  /\  z  e.  X )  ->  (
y M z )  e.  RR )
4734, 43, 36, 46syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( y M z )  e.  RR )
4845, 47readdcld 10069 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( ( y M x )  +  ( y M z ) )  e.  RR )
49 mettri2 22146 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ( Met `  X )  /\  (
y  e.  X  /\  x  e.  X  /\  z  e.  X )
)  ->  ( x M z )  <_ 
( ( y M x )  +  ( y M z ) ) )
5034, 43, 35, 36, 49syl13anc 1328 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x M z )  <_  ( (
y M x )  +  ( y M z ) ) )
5130adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
r  e.  RR )
52 simplrr 801 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  ->  X  =  ( y
( ball `  M )
r ) )
5335, 52eleqtrd 2703 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  ->  x  e.  ( y
( ball `  M )
r ) )
54 metxmet 22139 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  ( Met `  X
)  ->  M  e.  ( *Met `  X
) )
5534, 54syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  ->  M  e.  ( *Met `  X ) )
56 rpxr 11840 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  e.  RR+  ->  r  e. 
RR* )
5756ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) )  ->  r  e.  RR* )
5857ad2antlr 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
r  e.  RR* )
59 elbl2 22195 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ( *Met `  X
)  /\  r  e.  RR* )  /\  ( y  e.  X  /\  x  e.  X ) )  -> 
( x  e.  ( y ( ball `  M
) r )  <->  ( y M x )  < 
r ) )
6055, 58, 43, 35, 59syl22anc 1327 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x  e.  ( y ( ball `  M
) r )  <->  ( y M x )  < 
r ) )
6153, 60mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( y M x )  <  r )
6236, 52eleqtrd 2703 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
z  e.  ( y ( ball `  M
) r ) )
63 elbl2 22195 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  ( *Met `  X
)  /\  r  e.  RR* )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( z  e.  ( y ( ball `  M
) r )  <->  ( y M z )  < 
r ) )
6455, 58, 43, 36, 63syl22anc 1327 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( z  e.  ( y ( ball `  M
) r )  <->  ( y M z )  < 
r ) )
6562, 64mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( y M z )  <  r )
6645, 47, 51, 51, 61, 65lt2addd 10650 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( ( y M x )  +  ( y M z ) )  <  ( r  +  r ) )
6751recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
r  e.  CC )
68672timesd 11275 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( 2  x.  r
)  =  ( r  +  r ) )
6966, 68breqtrrd 4681 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( ( y M x )  +  ( y M z ) )  <  ( 2  x.  r ) )
7038, 48, 41, 50, 69lelttrd 10195 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x M z )  <  ( 2  x.  r ) )
7138, 41, 70ltled 10185 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x M z )  <_  ( 2  x.  r ) )
72 elicc2 12238 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( 2  x.  r
)  e.  RR )  ->  ( ( x M z )  e.  ( 0 [,] (
2  x.  r ) )  <->  ( ( x M z )  e.  RR  /\  0  <_ 
( x M z )  /\  ( x M z )  <_ 
( 2  x.  r
) ) ) )
732, 41, 72sylancr 695 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( ( x M z )  e.  ( 0 [,] ( 2  x.  r ) )  <-> 
( ( x M z )  e.  RR  /\  0  <_  ( x M z )  /\  ( x M z )  <_  ( 2  x.  r ) ) ) )
7438, 40, 71, 73mpbir3and 1245 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  ( ( y  e.  X  /\  r  e.  RR+ )  /\  X  =  ( y (
ball `  M )
r ) ) )  /\  ( x  e.  X  /\  z  e.  X ) )  -> 
( x M z )  e.  ( 0 [,] ( 2  x.  r ) ) )
7574ralrimivva 2971 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  A. x  e.  X  A. z  e.  X  ( x M z )  e.  ( 0 [,] (
2  x.  r ) ) )
76 ffnov 6764 . . . . . . . . . . 11  |-  ( M : ( X  X.  X ) --> ( 0 [,] ( 2  x.  r ) )  <->  ( M  Fn  ( X  X.  X
)  /\  A. x  e.  X  A. z  e.  X  ( x M z )  e.  ( 0 [,] (
2  x.  r ) ) ) )
7733, 75, 76sylanbrc 698 . . . . . . . . . 10  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  M :
( X  X.  X
) --> ( 0 [,] ( 2  x.  r
) ) )
78 oveq2 6658 . . . . . . . . . . . 12  |-  ( x  =  ( 2  x.  r )  ->  (
0 [,] x )  =  ( 0 [,] ( 2  x.  r
) ) )
7978feq3d 6032 . . . . . . . . . . 11  |-  ( x  =  ( 2  x.  r )  ->  ( M : ( X  X.  X ) --> ( 0 [,] x )  <->  M :
( X  X.  X
) --> ( 0 [,] ( 2  x.  r
) ) ) )
8079rspcev 3309 . . . . . . . . . 10  |-  ( ( ( 2  x.  r
)  e.  RR  /\  M : ( X  X.  X ) --> ( 0 [,] ( 2  x.  r ) ) )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) )
8132, 77, 80syl2anc 693 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  (
( y  e.  X  /\  r  e.  RR+ )  /\  X  =  (
y ( ball `  M
) r ) ) )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) )
8281expr 643 . . . . . . . 8  |-  ( ( M  e.  ( Met `  X )  /\  (
y  e.  X  /\  r  e.  RR+ ) )  ->  ( X  =  ( y ( ball `  M ) r )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) ) )
8382rexlimdvva 3038 . . . . . . 7  |-  ( M  e.  ( Met `  X
)  ->  ( E. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M ) r )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) ) )
841, 83syl 17 . . . . . 6  |-  ( M  e.  ( Bnd `  X
)  ->  ( E. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M ) r )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) ) )
8584adantr 481 . . . . 5  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =/=  (/) )  ->  ( E. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M ) r )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) ) )
8627, 85mpd 15 . . . 4  |-  ( ( M  e.  ( Bnd `  X )  /\  X  =/=  (/) )  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) )
8725, 86pm2.61dane 2881 . . 3  |-  ( M  e.  ( Bnd `  X
)  ->  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) )
881, 87jca 554 . 2  |-  ( M  e.  ( Bnd `  X
)  ->  ( M  e.  ( Met `  X
)  /\  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) ) )
89 simpll 790 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  /\  M : ( X  X.  X ) --> ( 0 [,] x
) )  ->  M  e.  ( Met `  X
) )
90 simpllr 799 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  x  e.  RR )
9189adantr 481 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  M  e.  ( Met `  X ) )
92 simpr 477 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  y  e.  X )
93 met0 22148 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X )  ->  (
y M y )  =  0 )
9491, 92, 93syl2anc 693 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( y M y )  =  0 )
95 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  M : ( X  X.  X ) --> ( 0 [,] x ) )
9695, 92, 92fovrnd 6806 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( y M y )  e.  ( 0 [,] x ) )
97 elicc2 12238 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  x  e.  RR )  ->  ( ( y M y )  e.  ( 0 [,] x )  <-> 
( ( y M y )  e.  RR  /\  0  <_  ( y M y )  /\  ( y M y )  <_  x )
) )
982, 90, 97sylancr 695 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( ( y M y )  e.  ( 0 [,] x )  <-> 
( ( y M y )  e.  RR  /\  0  <_  ( y M y )  /\  ( y M y )  <_  x )
) )
9996, 98mpbid 222 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( ( y M y )  e.  RR  /\  0  <_  ( y M y )  /\  ( y M y )  <_  x )
)
10099simp3d 1075 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( y M y )  <_  x )
10194, 100eqbrtrrd 4677 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  0  <_  x )
10290, 101ge0p1rpd 11902 . . . . . 6  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( x  +  1 )  e.  RR+ )
103 fovrn 6804 . . . . . . . . . . . . . 14  |-  ( ( M : ( X  X.  X ) --> ( 0 [,] x )  /\  y  e.  X  /\  z  e.  X
)  ->  ( y M z )  e.  ( 0 [,] x
) )
1041033expa 1265 . . . . . . . . . . . . 13  |-  ( ( ( M : ( X  X.  X ) --> ( 0 [,] x
)  /\  y  e.  X )  /\  z  e.  X )  ->  (
y M z )  e.  ( 0 [,] x ) )
105104adantlll 754 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( y M z )  e.  ( 0 [,] x
) )
106 elicc2 12238 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  x  e.  RR )  ->  ( ( y M z )  e.  ( 0 [,] x )  <-> 
( ( y M z )  e.  RR  /\  0  <_  ( y M z )  /\  ( y M z )  <_  x )
) )
1072, 90, 106sylancr 695 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( ( y M z )  e.  ( 0 [,] x )  <-> 
( ( y M z )  e.  RR  /\  0  <_  ( y M z )  /\  ( y M z )  <_  x )
) )
108107adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( (
y M z )  e.  ( 0 [,] x )  <->  ( (
y M z )  e.  RR  /\  0  <_  ( y M z )  /\  ( y M z )  <_  x ) ) )
109105, 108mpbid 222 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( (
y M z )  e.  RR  /\  0  <_  ( y M z )  /\  ( y M z )  <_  x ) )
110109simp1d 1073 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( y M z )  e.  RR )
11190adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  x  e.  RR )
112 peano2re 10209 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
11390, 112syl 17 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( x  +  1 )  e.  RR )
114113adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( x  +  1 )  e.  RR )
115109simp3d 1075 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( y M z )  <_  x )
116111ltp1d 10954 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  x  <  ( x  +  1 ) )
117110, 111, 114, 115, 116lelttrd 10195 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  /\  z  e.  X
)  ->  ( y M z )  < 
( x  +  1 ) )
118117ralrimiva 2966 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  A. z  e.  X  ( y M z )  <  ( x  +  1 ) )
119 rabid2 3118 . . . . . . . 8  |-  ( X  =  { z  e.  X  |  ( y M z )  < 
( x  +  1 ) }  <->  A. z  e.  X  ( y M z )  < 
( x  +  1 ) )
120118, 119sylibr 224 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  X  =  { z  e.  X  |  ( y M z )  <  ( x  + 
1 ) } )
12191, 54syl 17 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  M  e.  ( *Met `  X ) )
122113rexrd 10089 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( x  +  1 )  e.  RR* )
123 blval 22191 . . . . . . . 8  |-  ( ( M  e.  ( *Met `  X )  /\  y  e.  X  /\  ( x  +  1 )  e.  RR* )  ->  ( y ( ball `  M ) ( x  +  1 ) )  =  { z  e.  X  |  ( y M z )  < 
( x  +  1 ) } )
124121, 92, 122, 123syl3anc 1326 . . . . . . 7  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  ( y ( ball `  M ) ( x  +  1 ) )  =  { z  e.  X  |  ( y M z )  < 
( x  +  1 ) } )
125120, 124eqtr4d 2659 . . . . . 6  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  X  =  ( y ( ball `  M
) ( x  + 
1 ) ) )
126 oveq2 6658 . . . . . . . 8  |-  ( r  =  ( x  + 
1 )  ->  (
y ( ball `  M
) r )  =  ( y ( ball `  M ) ( x  +  1 ) ) )
127126eqeq2d 2632 . . . . . . 7  |-  ( r  =  ( x  + 
1 )  ->  ( X  =  ( y
( ball `  M )
r )  <->  X  =  ( y ( ball `  M ) ( x  +  1 ) ) ) )
128127rspcev 3309 . . . . . 6  |-  ( ( ( x  +  1 )  e.  RR+  /\  X  =  ( y (
ball `  M )
( x  +  1 ) ) )  ->  E. r  e.  RR+  X  =  ( y ( ball `  M ) r ) )
129102, 125, 128syl2anc 693 . . . . 5  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  x  e.  RR )  /\  M :
( X  X.  X
) --> ( 0 [,] x ) )  /\  y  e.  X )  ->  E. r  e.  RR+  X  =  ( y (
ball `  M )
r ) )
130129ralrimiva 2966 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  /\  M : ( X  X.  X ) --> ( 0 [,] x
) )  ->  A. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M
) r ) )
131 isbnd 33579 . . . 4  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. y  e.  X  E. r  e.  RR+  X  =  ( y ( ball `  M
) r ) ) )
13289, 130, 131sylanbrc 698 . . 3  |-  ( ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  /\  M : ( X  X.  X ) --> ( 0 [,] x
) )  ->  M  e.  ( Bnd `  X
) )
133132r19.29an 3077 . 2  |-  ( ( M  e.  ( Met `  X )  /\  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) )  ->  M  e.  ( Bnd `  X ) )
13488, 133impbii 199 1  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075   2c2 11070   RR+crp 11832   [,]cicc 12178   *Metcxmt 19731   Metcme 19732   ballcbl 19733   Bndcbnd 33566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-bnd 33578
This theorem is referenced by:  isbnd3b  33584  prdsbnd  33592
  Copyright terms: Public domain W3C validator