MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islidl Structured version   Visualization version   GIF version

Theorem islidl 19211
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s 𝑈 = (LIdeal‘𝑅)
islidl.b 𝐵 = (Base‘𝑅)
islidl.p + = (+g𝑅)
islidl.t · = (.r𝑅)
Assertion
Ref Expression
islidl (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵   𝐼,𝑎,𝑏,𝑥   𝑅,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝑈(𝑥,𝑎,𝑏)

Proof of Theorem islidl
StepHypRef Expression
1 rlmsca2 19201 . 2 ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅))
2 baseid 15919 . . 3 Base = Slot (Base‘ndx)
3 islidl.b . . 3 𝐵 = (Base‘𝑅)
42, 3strfvi 15913 . 2 𝐵 = (Base‘( I ‘𝑅))
5 rlmbas 19195 . . 3 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
63, 5eqtri 2644 . 2 𝐵 = (Base‘(ringLMod‘𝑅))
7 islidl.p . . 3 + = (+g𝑅)
8 rlmplusg 19196 . . 3 (+g𝑅) = (+g‘(ringLMod‘𝑅))
97, 8eqtri 2644 . 2 + = (+g‘(ringLMod‘𝑅))
10 islidl.t . . 3 · = (.r𝑅)
11 rlmvsca 19202 . . 3 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
1210, 11eqtri 2644 . 2 · = ( ·𝑠 ‘(ringLMod‘𝑅))
13 islidl.s . . 3 𝑈 = (LIdeal‘𝑅)
14 lidlval 19192 . . 3 (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))
1513, 14eqtri 2644 . 2 𝑈 = (LSubSp‘(ringLMod‘𝑅))
161, 4, 6, 9, 12, 15islss 18935 1 (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wb 196  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915   I cid 5023  cfv 5888  (class class class)co 6650  ndxcnx 15854  Basecbs 15857  +gcplusg 15941  .rcmulr 15942   ·𝑠 cvsca 15945  LSubSpclss 18932  ringLModcrglmod 19169  LIdealclidl 19170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-sca 15957  df-vsca 15958  df-ip 15959  df-lss 18933  df-sra 19172  df-rgmod 19173  df-lidl 19174
This theorem is referenced by:  hbtlem2  37694  2zlidl  41934
  Copyright terms: Public domain W3C validator