Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zlidl Structured version   Visualization version   GIF version

Theorem 2zlidl 41934
Description: The even integers are a (left) ideal of the ring of integers. (Contributed by AV, 20-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zlidl.u 𝑈 = (LIdeal‘ℤring)
Assertion
Ref Expression
2zlidl 𝐸𝑈
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑈(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem 2zlidl
Dummy variables 𝑘 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 ssrab2 3687 . . 3 {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⊆ ℤ
31, 2eqsstri 3635 . 2 𝐸 ⊆ ℤ
410even 41931 . . 3 0 ∈ 𝐸
54ne0ii 3923 . 2 𝐸 ≠ ∅
6 eqeq1 2626 . . . . . . . 8 (𝑧 = 𝑗 → (𝑧 = (2 · 𝑥) ↔ 𝑗 = (2 · 𝑥)))
76rexbidv 3052 . . . . . . 7 (𝑧 = 𝑗 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)))
87, 1elrab2 3366 . . . . . 6 (𝑗𝐸 ↔ (𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)))
9 eqeq1 2626 . . . . . . . 8 (𝑧 = 𝑘 → (𝑧 = (2 · 𝑥) ↔ 𝑘 = (2 · 𝑥)))
109rexbidv 3052 . . . . . . 7 (𝑧 = 𝑘 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))
1110, 1elrab2 3366 . . . . . 6 (𝑘𝐸 ↔ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))
128, 11anbi12i 733 . . . . 5 ((𝑗𝐸𝑘𝐸) ↔ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))))
13 simpl 473 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑖 ∈ ℤ)
14 simprll 802 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑗 ∈ ℤ)
1513, 14zmulcld 11488 . . . . . . 7 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → (𝑖 · 𝑗) ∈ ℤ)
16 simpl 473 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → 𝑘 ∈ ℤ)
1716adantl 482 . . . . . . . 8 (((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))) → 𝑘 ∈ ℤ)
1817adantl 482 . . . . . . 7 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑘 ∈ ℤ)
1915, 18zaddcld 11486 . . . . . 6 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ((𝑖 · 𝑗) + 𝑘) ∈ ℤ)
20 oveq2 6658 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (2 · 𝑥) = (2 · 𝑎))
2120eqeq2d 2632 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑗 = (2 · 𝑥) ↔ 𝑗 = (2 · 𝑎)))
2221cbvrexv 3172 . . . . . . . . . 10 (∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥) ↔ ∃𝑎 ∈ ℤ 𝑗 = (2 · 𝑎))
23 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (2 · 𝑥) = (2 · 𝑏))
2423eqeq2d 2632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → (𝑘 = (2 · 𝑥) ↔ 𝑘 = (2 · 𝑏)))
2524cbvrexv 3172 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥) ↔ ∃𝑏 ∈ ℤ 𝑘 = (2 · 𝑏))
26 simpr 477 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
27 simprll 802 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑎 ∈ ℤ)
2827adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑎 ∈ ℤ)
2926, 28zmulcld 11488 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑎) ∈ ℤ)
30 simp-4l 806 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑏 ∈ ℤ)
3129, 30zaddcld 11486 . . . . . . . . . . . . . . . . 17 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · 𝑎) + 𝑏) ∈ ℤ)
32 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → 𝑗 = (2 · 𝑎))
3332ad2antrl 764 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑗 = (2 · 𝑎))
3433oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → (𝑖 · 𝑗) = (𝑖 · (2 · 𝑎)))
35 simpllr 799 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑘 = (2 · 𝑏))
3634, 35oveq12d 6668 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → ((𝑖 · 𝑗) + 𝑘) = ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)))
3736adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · 𝑗) + 𝑘) = ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)))
38 oveq2 6658 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑖 · 𝑎) + 𝑏) → (2 · 𝑥) = (2 · ((𝑖 · 𝑎) + 𝑏)))
3937, 38eqeqan12d 2638 . . . . . . . . . . . . . . . . 17 ((((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) ∧ 𝑥 = ((𝑖 · 𝑎) + 𝑏)) → (((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥) ↔ ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = (2 · ((𝑖 · 𝑎) + 𝑏))))
40 zcn 11382 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
4140adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
42 2cnd 11093 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
43 zcn 11382 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
4443adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → 𝑎 ∈ ℂ)
4544ad2antrl 764 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑎 ∈ ℂ)
4645adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑎 ∈ ℂ)
4741, 42, 46mul12d 10245 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · (2 · 𝑎)) = (2 · (𝑖 · 𝑎)))
4847oveq1d 6665 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = ((2 · (𝑖 · 𝑎)) + (2 · 𝑏)))
4941, 46mulcld 10060 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑎) ∈ ℂ)
50 zcn 11382 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
5150ad4antr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑏 ∈ ℂ)
5242, 49, 51adddid 10064 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (2 · ((𝑖 · 𝑎) + 𝑏)) = ((2 · (𝑖 · 𝑎)) + (2 · 𝑏)))
5348, 52eqtr4d 2659 . . . . . . . . . . . . . . . . 17 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = (2 · ((𝑖 · 𝑎) + 𝑏)))
5431, 39, 53rspcedvd 3317 . . . . . . . . . . . . . . . 16 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))
5554exp41 638 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5655rexlimiva 3028 . . . . . . . . . . . . . 14 (∃𝑏 ∈ ℤ 𝑘 = (2 · 𝑏) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5725, 56sylbi 207 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5857impcom 446 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))))
5958expdcom 455 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6059rexlimiva 3028 . . . . . . . . . 10 (∃𝑎 ∈ ℤ 𝑗 = (2 · 𝑎) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6122, 60sylbi 207 . . . . . . . . 9 (∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6261impcom 446 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))))
6362imp 445 . . . . . . 7 (((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6463impcom 446 . . . . . 6 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))
65 eqeq1 2626 . . . . . . . 8 (𝑧 = ((𝑖 · 𝑗) + 𝑘) → (𝑧 = (2 · 𝑥) ↔ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6665rexbidv 3052 . . . . . . 7 (𝑧 = ((𝑖 · 𝑗) + 𝑘) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6766, 1elrab2 3366 . . . . . 6 (((𝑖 · 𝑗) + 𝑘) ∈ 𝐸 ↔ (((𝑖 · 𝑗) + 𝑘) ∈ ℤ ∧ ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6819, 64, 67sylanbrc 698 . . . . 5 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
6912, 68sylan2b 492 . . . 4 ((𝑖 ∈ ℤ ∧ (𝑗𝐸𝑘𝐸)) → ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
7069ralrimivva 2971 . . 3 (𝑖 ∈ ℤ → ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
7170rgen 2922 . 2 𝑖 ∈ ℤ ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸
72 2zlidl.u . . 3 𝑈 = (LIdeal‘ℤring)
73 zringbas 19824 . . 3 ℤ = (Base‘ℤring)
74 zringplusg 19825 . . 3 + = (+g‘ℤring)
75 zringmulr 19827 . . 3 · = (.r‘ℤring)
7672, 73, 74, 75islidl 19211 . 2 (𝐸𝑈 ↔ (𝐸 ⊆ ℤ ∧ 𝐸 ≠ ∅ ∧ ∀𝑖 ∈ ℤ ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸))
773, 5, 71, 76mpbir3an 1244 1 𝐸𝑈
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936   + caddc 9939   · cmul 9941  2c2 11070  cz 11377  LIdealclidl 19170  ringzring 19818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-lss 18933  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-cnfld 19747  df-zring 19819
This theorem is referenced by:  2zrng  41935
  Copyright terms: Public domain W3C validator