Proof of Theorem islmhm2
| Step | Hyp | Ref
| Expression |
| 1 | | islmhm2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
| 2 | | islmhm2.c |
. . . . 5
⊢ 𝐶 = (Base‘𝑇) |
| 3 | 1, 2 | lmhmf 19034 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| 4 | | islmhm2.k |
. . . . 5
⊢ 𝐾 = (Scalar‘𝑆) |
| 5 | | islmhm2.l |
. . . . 5
⊢ 𝐿 = (Scalar‘𝑇) |
| 6 | 4, 5 | lmhmsca 19030 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾) |
| 7 | | lmghm 19031 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 8 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 9 | | lmhmlmod1 19033 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| 10 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑆 ∈ LMod) |
| 11 | | simpr1 1067 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐸) |
| 12 | | simpr2 1068 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 13 | | islmhm2.m |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑆) |
| 14 | | islmhm2.e |
. . . . . . . . 9
⊢ 𝐸 = (Base‘𝐾) |
| 15 | 1, 4, 13, 14 | lmodvscl 18880 |
. . . . . . . 8
⊢ ((𝑆 ∈ LMod ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
| 16 | 10, 11, 12, 15 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
| 17 | | simpr3 1069 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
| 18 | | islmhm2.p |
. . . . . . . 8
⊢ + =
(+g‘𝑆) |
| 19 | | islmhm2.q |
. . . . . . . 8
⊢ ⨣ =
(+g‘𝑇) |
| 20 | 1, 18, 19 | ghmlin 17665 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 · 𝑦) ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝐹‘(𝑥 · 𝑦)) ⨣ (𝐹‘𝑧))) |
| 21 | 8, 16, 17, 20 | syl3anc 1326 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝐹‘(𝑥 · 𝑦)) ⨣ (𝐹‘𝑧))) |
| 22 | | islmhm2.n |
. . . . . . . . 9
⊢ × = (
·𝑠 ‘𝑇) |
| 23 | 4, 14, 1, 13, 22 | lmhmlin 19035 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| 24 | 23 | 3adant3r3 1276 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| 25 | 24 | oveq1d 6665 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝐹‘(𝑥 · 𝑦)) ⨣ (𝐹‘𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) |
| 26 | 21, 25 | eqtrd 2656 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) |
| 27 | 26 | ralrimivvva 2972 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) |
| 28 | 3, 6, 27 | 3jca 1242 |
. . 3
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
| 29 | 28 | adantl 482 |
. 2
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
| 30 | | lmodgrp 18870 |
. . . . . 6
⊢ (𝑆 ∈ LMod → 𝑆 ∈ Grp) |
| 31 | | lmodgrp 18870 |
. . . . . 6
⊢ (𝑇 ∈ LMod → 𝑇 ∈ Grp) |
| 32 | 30, 31 | anim12i 590 |
. . . . 5
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) |
| 33 | 32 | adantr 481 |
. . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) |
| 34 | | simpr1 1067 |
. . . . 5
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐹:𝐵⟶𝐶) |
| 35 | 4 | lmodring 18871 |
. . . . . . . . . 10
⊢ (𝑆 ∈ LMod → 𝐾 ∈ Ring) |
| 36 | 35 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → 𝐾 ∈ Ring) |
| 37 | | eqid 2622 |
. . . . . . . . . 10
⊢
(1r‘𝐾) = (1r‘𝐾) |
| 38 | 14, 37 | ringidcl 18568 |
. . . . . . . . 9
⊢ (𝐾 ∈ Ring →
(1r‘𝐾)
∈ 𝐸) |
| 39 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (1r‘𝐾) → (𝑥 · 𝑦) = ((1r‘𝐾) · 𝑦)) |
| 40 | 39 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1r‘𝐾) → ((𝑥 · 𝑦) + 𝑧) = (((1r‘𝐾) · 𝑦) + 𝑧)) |
| 41 | 40 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1r‘𝐾) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧))) |
| 42 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1r‘𝐾) → (𝑥 × (𝐹‘𝑦)) = ((1r‘𝐾) × (𝐹‘𝑦))) |
| 43 | 42 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1r‘𝐾) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) |
| 44 | 41, 43 | eqeq12d 2637 |
. . . . . . . . . . 11
⊢ (𝑥 = (1r‘𝐾) → ((𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
| 45 | 44 | 2ralbidv 2989 |
. . . . . . . . . 10
⊢ (𝑥 = (1r‘𝐾) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
| 46 | 45 | rspcv 3305 |
. . . . . . . . 9
⊢
((1r‘𝐾) ∈ 𝐸 → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
| 47 | 36, 38, 46 | 3syl 18 |
. . . . . . . 8
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
| 48 | | simplll 798 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑆 ∈ LMod) |
| 49 | | simprl 794 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 50 | 1, 4, 13, 37 | lmodvs1 18891 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ LMod ∧ 𝑦 ∈ 𝐵) → ((1r‘𝐾) · 𝑦) = 𝑦) |
| 51 | 48, 49, 50 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐾) · 𝑦) = 𝑦) |
| 52 | 51 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((1r‘𝐾) · 𝑦) + 𝑧) = (𝑦 + 𝑧)) |
| 53 | 52 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (𝐹‘(𝑦 + 𝑧))) |
| 54 | | simplrr 801 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐿 = 𝐾) |
| 55 | 54 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (1r‘𝐿) = (1r‘𝐾)) |
| 56 | 55 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐿) × (𝐹‘𝑦)) = ((1r‘𝐾) × (𝐹‘𝑦))) |
| 57 | | simpllr 799 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑇 ∈ LMod) |
| 58 | | simplrl 800 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐹:𝐵⟶𝐶) |
| 59 | 58, 49 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘𝑦) ∈ 𝐶) |
| 60 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(1r‘𝐿) = (1r‘𝐿) |
| 61 | 2, 5, 22, 60 | lmodvs1 18891 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ LMod ∧ (𝐹‘𝑦) ∈ 𝐶) → ((1r‘𝐿) × (𝐹‘𝑦)) = (𝐹‘𝑦)) |
| 62 | 57, 59, 61 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐿) × (𝐹‘𝑦)) = (𝐹‘𝑦)) |
| 63 | 56, 62 | eqtr3d 2658 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐾) × (𝐹‘𝑦)) = (𝐹‘𝑦)) |
| 64 | 63 | oveq1d 6665 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧))) |
| 65 | 53, 64 | eqeq12d 2637 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) |
| 66 | 65 | 2ralbidva 2988 |
. . . . . . . 8
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) |
| 67 | 47, 66 | sylibd 229 |
. . . . . . 7
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) |
| 68 | 67 | exp32 631 |
. . . . . 6
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵⟶𝐶 → (𝐿 = 𝐾 → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))))) |
| 69 | 68 | 3imp2 1282 |
. . . . 5
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧))) |
| 70 | 34, 69 | jca 554 |
. . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) |
| 71 | 1, 2, 18, 19 | isghm 17660 |
. . . 4
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧))))) |
| 72 | 33, 70, 71 | sylanbrc 698 |
. . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 73 | | simpr2 1068 |
. . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐿 = 𝐾) |
| 74 | | eqid 2622 |
. . . . . 6
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 75 | | eqid 2622 |
. . . . . 6
⊢
(0g‘𝑇) = (0g‘𝑇) |
| 76 | 74, 75 | ghmid 17666 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
| 77 | 72, 76 | syl 17 |
. . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
| 78 | 30 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Grp) |
| 79 | 1, 74 | grpidcl 17450 |
. . . . . . . . . 10
⊢ (𝑆 ∈ Grp →
(0g‘𝑆)
∈ 𝐵) |
| 80 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (0g‘𝑆) → ((𝑥 · 𝑦) + 𝑧) = ((𝑥 · 𝑦) + (0g‘𝑆))) |
| 81 | 80 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑧 = (0g‘𝑆) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆)))) |
| 82 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (0g‘𝑆) → (𝐹‘𝑧) = (𝐹‘(0g‘𝑆))) |
| 83 | 82 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑧 = (0g‘𝑆) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆)))) |
| 84 | 81, 83 | eqeq12d 2637 |
. . . . . . . . . . 11
⊢ (𝑧 = (0g‘𝑆) → ((𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))))) |
| 85 | 84 | rspcv 3305 |
. . . . . . . . . 10
⊢
((0g‘𝑆) ∈ 𝐵 → (∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))))) |
| 86 | 78, 79, 85 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))))) |
| 87 | | simplll 798 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ LMod) |
| 88 | | simprl 794 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐸) |
| 89 | | simprr 796 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 90 | 87, 88, 89, 15 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
| 91 | 1, 18, 74 | grprid 17453 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Grp ∧ (𝑥 · 𝑦) ∈ 𝐵) → ((𝑥 · 𝑦) + (0g‘𝑆)) = (𝑥 · 𝑦)) |
| 92 | 78, 90, 91 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 · 𝑦) + (0g‘𝑆)) = (𝑥 · 𝑦)) |
| 93 | 92 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = (𝐹‘(𝑥 · 𝑦))) |
| 94 | | simplr3 1105 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
| 95 | 94 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣
(0g‘𝑇))) |
| 96 | | simpllr 799 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑇 ∈ LMod) |
| 97 | 96, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑇 ∈ Grp) |
| 98 | | simplr2 1104 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝐿 = 𝐾) |
| 99 | 98 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (Base‘𝐿) = (Base‘𝐾)) |
| 100 | 99, 14 | syl6eqr 2674 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (Base‘𝐿) = 𝐸) |
| 101 | 88, 100 | eleqtrrd 2704 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝐿)) |
| 102 | | simplr1 1103 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝐹:𝐵⟶𝐶) |
| 103 | 102, 89 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑦) ∈ 𝐶) |
| 104 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 105 | 2, 5, 22, 104 | lmodvscl 18880 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐿) ∧ (𝐹‘𝑦) ∈ 𝐶) → (𝑥 × (𝐹‘𝑦)) ∈ 𝐶) |
| 106 | 96, 101, 103, 105 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝑥 × (𝐹‘𝑦)) ∈ 𝐶) |
| 107 | 2, 19, 75 | grprid 17453 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ Grp ∧ (𝑥 × (𝐹‘𝑦)) ∈ 𝐶) → ((𝑥 × (𝐹‘𝑦)) ⨣
(0g‘𝑇)) =
(𝑥 × (𝐹‘𝑦))) |
| 108 | 97, 106, 107 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 × (𝐹‘𝑦)) ⨣
(0g‘𝑇)) =
(𝑥 × (𝐹‘𝑦))) |
| 109 | 95, 108 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))) = (𝑥 × (𝐹‘𝑦))) |
| 110 | 93, 109 | eqeq12d 2637 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))) ↔ (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
| 111 | 86, 110 | sylibd 229 |
. . . . . . . 8
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
| 112 | 111 | ralimdvva 2964 |
. . . . . . 7
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
| 113 | 112 | 3exp2 1285 |
. . . . . 6
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵⟶𝐶 → (𝐿 = 𝐾 → ((𝐹‘(0g‘𝑆)) = (0g‘𝑇) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))))) |
| 114 | 113 | com45 97 |
. . . . 5
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵⟶𝐶 → (𝐿 = 𝐾 → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ((𝐹‘(0g‘𝑆)) = (0g‘𝑇) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))))) |
| 115 | 114 | 3imp2 1282 |
. . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → ((𝐹‘(0g‘𝑆)) = (0g‘𝑇) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
| 116 | 77, 115 | mpd 15 |
. . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| 117 | 4, 5, 14, 1, 13, 22 | islmhm3 19028 |
. . . 4
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 118 | 117 | adantr 481 |
. . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 119 | 72, 73, 116, 118 | mpbir3and 1245 |
. 2
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 120 | 29, 119 | impbida 877 |
1
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))))) |