![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismidb | Structured version Visualization version GIF version |
Description: Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
midcl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
midcl.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ismidb.s | ⊢ 𝑆 = (pInvG‘𝐺) |
ismidb.m | ⊢ (𝜑 → 𝑀 ∈ 𝑃) |
Ref | Expression |
---|---|
ismidb | ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismidb.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑃) | |
2 | ismid.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | ismid.d | . . . 4 ⊢ − = (dist‘𝐺) | |
4 | ismid.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | eqid 2622 | . . . 4 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
6 | ismid.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | ismidb.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
8 | midcl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | midcl.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | ismid.1 | . . . 4 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | mideu 25630 | . . 3 ⊢ (𝜑 → ∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) |
12 | fveq2 6191 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑆‘𝑚) = (𝑆‘𝑀)) | |
13 | 12 | fveq1d 6193 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑆‘𝑚)‘𝐴) = ((𝑆‘𝑀)‘𝐴)) |
14 | 13 | eqeq2d 2632 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝐵 = ((𝑆‘𝑚)‘𝐴) ↔ 𝐵 = ((𝑆‘𝑀)‘𝐴))) |
15 | 14 | riota2 6633 | . . 3 ⊢ ((𝑀 ∈ 𝑃 ∧ ∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
16 | 1, 11, 15 | syl2anc 693 | . 2 ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
17 | df-mid 25666 | . . . . . 6 ⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) | |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))))) |
19 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
20 | 19, 2 | syl6eqr 2674 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
21 | fveq2 6191 | . . . . . . . . . . . 12 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺)) | |
22 | 21, 7 | syl6eqr 2674 | . . . . . . . . . . 11 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = 𝑆) |
23 | 22 | fveq1d 6193 | . . . . . . . . . 10 ⊢ (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = (𝑆‘𝑚)) |
24 | 23 | fveq1d 6193 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = ((𝑆‘𝑚)‘𝑎)) |
25 | 24 | eqeq2d 2632 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = ((𝑆‘𝑚)‘𝑎))) |
26 | 20, 25 | riotaeqbidv 6614 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) |
27 | 20, 20, 26 | mpt2eq123dv 6717 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
28 | 27 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
29 | elex 3212 | . . . . . 6 ⊢ (𝐺 ∈ TarskiG → 𝐺 ∈ V) | |
30 | 6, 29 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ V) |
31 | fvex 6201 | . . . . . . . 8 ⊢ (Base‘𝐺) ∈ V | |
32 | 2, 31 | eqeltri 2697 | . . . . . . 7 ⊢ 𝑃 ∈ V |
33 | 32, 32 | mpt2ex 7247 | . . . . . 6 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) ∈ V |
34 | 33 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) ∈ V) |
35 | 18, 28, 30, 34 | fvmptd 6288 | . . . 4 ⊢ (𝜑 → (midG‘𝐺) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
36 | simprr 796 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑏 = 𝐵) | |
37 | simprl 794 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑎 = 𝐴) | |
38 | 37 | fveq2d 6195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → ((𝑆‘𝑚)‘𝑎) = ((𝑆‘𝑚)‘𝐴)) |
39 | 36, 38 | eqeq12d 2637 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑏 = ((𝑆‘𝑚)‘𝑎) ↔ 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
40 | 39 | riotabidv 6613 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
41 | riotacl 6625 | . . . . 5 ⊢ (∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴) → (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) ∈ 𝑃) | |
42 | 11, 41 | syl 17 | . . . 4 ⊢ (𝜑 → (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) ∈ 𝑃) |
43 | 35, 40, 8, 9, 42 | ovmpt2d 6788 | . . 3 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
44 | 43 | eqeq1d 2624 | . 2 ⊢ (𝜑 → ((𝐴(midG‘𝐺)𝐵) = 𝑀 ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
45 | 16, 44 | bitr4d 271 | 1 ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃!wreu 2914 Vcvv 3200 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 ℩crio 6610 (class class class)co 6650 ↦ cmpt2 6652 2c2 11070 Basecbs 15857 distcds 15950 TarskiGcstrkg 25329 DimTarskiG≥cstrkgld 25333 Itvcitv 25335 LineGclng 25336 pInvGcmir 25547 midGcmid 25664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-concat 13301 df-s1 13302 df-s2 13593 df-s3 13594 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkgld 25351 df-trkg 25352 df-cgrg 25406 df-leg 25478 df-mir 25548 df-rag 25589 df-perpg 25591 df-mid 25666 |
This theorem is referenced by: midbtwn 25671 midcgr 25672 midcom 25674 mirmid 25675 lmieu 25676 lmimid 25686 lmiisolem 25688 hypcgrlem1 25691 hypcgrlem2 25692 hypcgr 25693 trgcopyeulem 25697 |
Copyright terms: Public domain | W3C validator |