MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypcgrlem1 Structured version   Visualization version   GIF version

Theorem hypcgrlem1 25691
Description: Lemma for hypcgr 25693, case where triangles share a cathetus. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
hypcgr.p 𝑃 = (Base‘𝐺)
hypcgr.m = (dist‘𝐺)
hypcgr.i 𝐼 = (Itv‘𝐺)
hypcgr.g (𝜑𝐺 ∈ TarskiG)
hypcgr.h (𝜑𝐺DimTarskiG≥2)
hypcgr.a (𝜑𝐴𝑃)
hypcgr.b (𝜑𝐵𝑃)
hypcgr.c (𝜑𝐶𝑃)
hypcgr.d (𝜑𝐷𝑃)
hypcgr.e (𝜑𝐸𝑃)
hypcgr.f (𝜑𝐹𝑃)
hypcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
hypcgr.2 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
hypcgr.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
hypcgr.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
hypcgrlem2.b (𝜑𝐵 = 𝐸)
hypcgrlem1.s 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
hypcgrlem1.a (𝜑𝐶 = 𝐹)
Assertion
Ref Expression
hypcgrlem1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))

Proof of Theorem hypcgrlem1
StepHypRef Expression
1 hypcgr.p . . 3 𝑃 = (Base‘𝐺)
2 hypcgr.m . . 3 = (dist‘𝐺)
3 hypcgr.i . . 3 𝐼 = (Itv‘𝐺)
4 hypcgr.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐺 ∈ TarskiG)
6 hypcgr.c . . . 4 (𝜑𝐶𝑃)
76adantr 481 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐶𝑃)
8 hypcgr.a . . . 4 (𝜑𝐴𝑃)
98adantr 481 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐴𝑃)
10 hypcgr.f . . . 4 (𝜑𝐹𝑃)
1110adantr 481 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹𝑃)
12 hypcgr.d . . . 4 (𝜑𝐷𝑃)
1312adantr 481 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷𝑃)
14 eqid 2622 . . . . . . 7 (LineG‘𝐺) = (LineG‘𝐺)
15 eqid 2622 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
16 hypcgr.b . . . . . . 7 (𝜑𝐵𝑃)
17 hypcgr.1 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
181, 2, 3, 14, 15, 4, 8, 16, 6, 17ragcom 25593 . . . . . 6 (𝜑 → ⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺))
191, 2, 3, 14, 15, 4, 6, 16, 8israg 25592 . . . . . 6 (𝜑 → (⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴))))
2018, 19mpbid 222 . . . . 5 (𝜑 → (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
2120adantr 481 . . . 4 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
22 hypcgrlem1.a . . . . . . 7 (𝜑𝐶 = 𝐹)
2322eqcomd 2628 . . . . . 6 (𝜑𝐹 = 𝐶)
2423adantr 481 . . . . 5 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹 = 𝐶)
25 hypcgr.h . . . . . . 7 (𝜑𝐺DimTarskiG≥2)
261, 2, 3, 4, 25, 8, 12, 15, 16ismidb 25670 . . . . . 6 (𝜑 → (𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = 𝐵))
2726biimpar 502 . . . . 5 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴))
2824, 27oveq12d 6668 . . . 4 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐹 𝐷) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
2921, 28eqtr4d 2659 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 𝐴) = (𝐹 𝐷))
301, 2, 3, 5, 7, 9, 11, 13, 29tgcgrcomlr 25375 . 2 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
31 simpr 477 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐴 = 𝐷)
3222ad2antrr 762 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐶 = 𝐹)
3331, 32oveq12d 6668 . . 3 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → (𝐴 𝐶) = (𝐷 𝐹))
3417ad2antrr 762 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
354ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐺 ∈ TarskiG)
368ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴𝑃)
3716ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵𝑃)
386ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐶𝑃)
391, 2, 3, 14, 15, 35, 36, 37, 38israg 25592 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶))))
4034, 39mpbid 222 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
4125ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐺DimTarskiG≥2)
42 hypcgrlem1.s . . . . . . 7 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
4312ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷𝑃)
441, 2, 3, 35, 41, 36, 43midcl 25669 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ 𝑃)
45 simplr 792 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ≠ 𝐵)
461, 3, 14, 35, 44, 37, 45tgelrnln 25525 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∈ ran (LineG‘𝐺))
47 eqid 2622 . . . . . . 7 ((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵)
48 eqid 2622 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
491, 2, 3, 14, 15, 35, 37, 47, 38mircl 25556 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐵)‘𝐶) ∈ 𝑃)
50 simpr 477 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴𝐷)
511, 2, 3, 35, 41, 36, 43midbtwn 25671 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐴𝐼𝐷))
521, 14, 3, 35, 36, 44, 43, 51btwncolg3 25452 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 ∈ (𝐴(LineG‘𝐺)(𝐴(midG‘𝐺)𝐷)) ∨ 𝐴 = (𝐴(midG‘𝐺)𝐷)))
53 eqidd 2623 . . . . . . . . . . . . 13 (𝜑𝐷 = 𝐷)
54 hypcgrlem2.b . . . . . . . . . . . . 13 (𝜑𝐵 = 𝐸)
5553, 54, 22s3eqd 13609 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩)
5655ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩)
57 hypcgr.2 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
5857ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
5956, 58eqeltrd 2701 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺))
601, 2, 3, 14, 15, 35, 43, 37, 38israg 25592 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝐶) = (𝐷 (((pInvG‘𝐺)‘𝐵)‘𝐶))))
6159, 60mpbid 222 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 𝐶) = (𝐷 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
621, 14, 3, 35, 36, 43, 44, 48, 38, 49, 2, 50, 52, 40, 61lncgr 25464 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷) 𝐶) = ((𝐴(midG‘𝐺)𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐶)))
631, 2, 3, 14, 15, 35, 44, 37, 38israg 25592 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ ((𝐴(midG‘𝐺)𝐷) 𝐶) = ((𝐴(midG‘𝐺)𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐶))))
6462, 63mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
651, 3, 14, 35, 44, 37, 45tglinerflx1 25528 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
661, 3, 14, 35, 44, 37, 45tglinerflx2 25529 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵 ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
671, 2, 3, 35, 41, 42, 14, 46, 44, 47, 64, 65, 66, 38, 45lmimid 25686 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝑆𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶))
6867oveq2d 6666 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
6940, 68eqtr4d 2659 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐴 (𝑆𝐶)))
701, 2, 3, 35, 41, 43, 36midcom 25674 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(midG‘𝐺)𝐴) = (𝐴(midG‘𝐺)𝐷))
7170, 65eqeltrd 2701 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
7250necomd 2849 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷𝐴)
731, 3, 14, 35, 43, 36, 72tgelrnln 25525 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(LineG‘𝐺)𝐴) ∈ ran (LineG‘𝐺))
741, 2, 3, 35, 36, 44, 43, 51tgbtwncom 25383 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷𝐼𝐴))
751, 3, 14, 35, 43, 36, 44, 72, 74btwnlng1 25514 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷(LineG‘𝐺)𝐴))
7665, 75elind 3798 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∩ (𝐷(LineG‘𝐺)𝐴)))
771, 3, 14, 35, 43, 36, 72tglinerflx2 25529 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 ∈ (𝐷(LineG‘𝐺)𝐴))
7845necomd 2849 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵 ≠ (𝐴(midG‘𝐺)𝐷))
794ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG)
808ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴𝑃)
8112ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐷𝑃)
8225ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺DimTarskiG≥2)
83 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = (𝐴(midG‘𝐺)𝐷))
8483eqcomd 2628 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴(midG‘𝐺)𝐷) = 𝐴)
851, 2, 3, 79, 82, 80, 81, 84midcgr 25672 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 𝐴) = (𝐴 𝐷))
8685eqcomd 2628 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 𝐷) = (𝐴 𝐴))
871, 2, 3, 79, 80, 81, 80, 86axtgcgrid 25362 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = 𝐷)
8887ex 450 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 = (𝐴(midG‘𝐺)𝐷) → 𝐴 = 𝐷))
8988necon3d 2815 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴𝐷𝐴 ≠ (𝐴(midG‘𝐺)𝐷)))
9089imp 445 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 ≠ (𝐴(midG‘𝐺)𝐷))
91 hypcgr.e . . . . . . . . . . . . . 14 (𝜑𝐸𝑃)
92 hypcgr.3 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
931, 2, 3, 4, 8, 16, 12, 91, 92tgcgrcomlr 25375 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
9454oveq1d 6665 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐷) = (𝐸 𝐷))
9593, 94eqtr4d 2659 . . . . . . . . . . . 12 (𝜑 → (𝐵 𝐴) = (𝐵 𝐷))
9695ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐴) = (𝐵 𝐷))
97 eqidd 2623 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷))
981, 2, 3, 35, 41, 36, 43, 15, 44ismidb 25670 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷)))
9997, 98mpbird 247 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))
10099oveq2d 6666 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐷) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)))
10196, 100eqtrd 2656 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐴) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)))
1021, 2, 3, 14, 15, 35, 37, 44, 36israg 25592 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝐴) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))))
103101, 102mpbird 247 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”⟩ ∈ (∟G‘𝐺))
1041, 2, 3, 14, 35, 46, 73, 76, 66, 77, 78, 90, 103ragperp 25612 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴))
105104orcd 407 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴))
1061, 2, 3, 35, 41, 42, 14, 46, 43, 36islmib 25679 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 = (𝑆𝐷) ↔ ((𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∧ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴))))
10771, 105, 106mpbir2and 957 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 = (𝑆𝐷))
108107oveq1d 6665 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = ((𝑆𝐷) (𝑆𝐶)))
1091, 2, 3, 35, 41, 42, 14, 46, 43, 38lmiiso 25689 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝑆𝐷) (𝑆𝐶)) = (𝐷 𝐶))
11022oveq2d 6666 . . . . . 6 (𝜑 → (𝐷 𝐶) = (𝐷 𝐹))
111110ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 𝐶) = (𝐷 𝐹))
112108, 109, 1113eqtrd 2660 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = (𝐷 𝐹))
11369, 112eqtrd 2656 . . 3 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐷 𝐹))
11433, 113pm2.61dane 2881 . 2 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
11530, 114pm2.61dane 2881 1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  2c2 11070  ⟨“cs3 13587  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  DimTarskiGcstrkgld 25333  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  pInvGcmir 25547  ∟Gcrag 25588  ⟂Gcperpg 25590  midGcmid 25664  lInvGclmi 25665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-mir 25548  df-rag 25589  df-perpg 25591  df-mid 25666  df-lmi 25667
This theorem is referenced by:  hypcgrlem2  25692
  Copyright terms: Public domain W3C validator