MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxms2 Structured version   Visualization version   Unicode version

Theorem isxms2 22253
Description: Express the predicate " <. X ,  D >. is an extended metric space" with underlying set  X and distance function  D. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
isms.j  |-  J  =  ( TopOpen `  K )
isms.x  |-  X  =  ( Base `  K
)
isms.d  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
isxms2  |-  ( K  e.  *MetSp  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )

Proof of Theorem isxms2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isms.j . . 3  |-  J  =  ( TopOpen `  K )
2 isms.x . . 3  |-  X  =  ( Base `  K
)
3 isms.d . . 3  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
41, 2, 3isxms 22252 . 2  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  J  =  ( MetOpen `  D )
) )
52, 1istps 20738 . . . 4  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  X ) )
6 df-mopn 19742 . . . . . . . . . 10  |-  MetOpen  =  ( x  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  x )
) )
76dmmptss 5631 . . . . . . . . 9  |-  dom  MetOpen  C_  U. ran  *Met
8 toponmax 20730 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
98adantl 482 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  e.  J )
10 simpl 473 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  J  =  ( MetOpen `  D )
)
119, 10eleqtrd 2703 . . . . . . . . . 10  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  e.  ( MetOpen `  D )
)
12 elfvdm 6220 . . . . . . . . . 10  |-  ( X  e.  ( MetOpen `  D
)  ->  D  e.  dom 
MetOpen )
1311, 12syl 17 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  dom 
MetOpen )
147, 13sseldi 3601 . . . . . . . 8  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  U.
ran  *Met )
15 xmetunirn 22142 . . . . . . . 8  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
1614, 15sylib 208 . . . . . . 7  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  ( *Met `  dom  dom 
D ) )
17 eqid 2622 . . . . . . . . . . . . 13  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
1817mopntopon 22244 . . . . . . . . . . . 12  |-  ( D  e.  ( *Met ` 
dom  dom  D )  -> 
( MetOpen `  D )  e.  (TopOn `  dom  dom  D
) )
1916, 18syl 17 . . . . . . . . . . 11  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  ( MetOpen `  D )  e.  (TopOn `  dom  dom  D )
)
2010, 19eqeltrd 2701 . . . . . . . . . 10  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  J  e.  (TopOn `  dom  dom  D
) )
21 toponuni 20719 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  dom  dom 
D )  ->  dom  dom 
D  =  U. J
)
2220, 21syl 17 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  dom  dom  D  =  U. J )
23 toponuni 20719 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2423adantl 482 . . . . . . . . 9  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  X  =  U. J )
2522, 24eqtr4d 2659 . . . . . . . 8  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  dom  dom  D  =  X )
2625fveq2d 6195 . . . . . . 7  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  ( *Met `  dom  dom  D
)  =  ( *Met `  X ) )
2716, 26eleqtrd 2703 . . . . . 6  |-  ( ( J  =  ( MetOpen `  D )  /\  J  e.  (TopOn `  X )
)  ->  D  e.  ( *Met `  X
) )
2827ex 450 . . . . 5  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  ->  D  e.  ( *Met `  X ) ) )
2917mopntopon 22244 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( MetOpen
`  D )  e.  (TopOn `  X )
)
30 eleq1 2689 . . . . . 6  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  <->  (
MetOpen `  D )  e.  (TopOn `  X )
) )
3129, 30syl5ibr 236 . . . . 5  |-  ( J  =  ( MetOpen `  D
)  ->  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
) )
3228, 31impbid 202 . . . 4  |-  ( J  =  ( MetOpen `  D
)  ->  ( J  e.  (TopOn `  X )  <->  D  e.  ( *Met `  X ) ) )
335, 32syl5bb 272 . . 3  |-  ( J  =  ( MetOpen `  D
)  ->  ( K  e.  TopSp 
<->  D  e.  ( *Met `  X ) ) )
3433pm5.32ri 670 . 2  |-  ( ( K  e.  TopSp  /\  J  =  ( MetOpen `  D
) )  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )
354, 34bitri 264 1  |-  ( K  e.  *MetSp  <->  ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   U.cuni 4436    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   ` cfv 5888   Basecbs 15857   distcds 15950   TopOpenctopn 16082   topGenctg 16098   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736  TopOnctopon 20715   TopSpctps 20736   *MetSpcxme 22122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125
This theorem is referenced by:  isms2  22255  xmsxmet  22261  setsxms  22284  tmsxms  22291  imasf1oxms  22294  ressxms  22330  prdsxms  22335
  Copyright terms: Public domain W3C validator