MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxms Structured version   Visualization version   GIF version

Theorem imasf1oxms 22294
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1obl.v (𝜑𝑉 = (Base‘𝑅))
imasf1obl.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oxms.r (𝜑𝑅 ∈ ∞MetSp)
Assertion
Ref Expression
imasf1oxms (𝜑𝑈 ∈ ∞MetSp)

Proof of Theorem imasf1oxms
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1obl.u . . . . 5 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1obl.v . . . . 5 (𝜑𝑉 = (Base‘𝑅))
3 imasf1obl.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝐵)
4 imasf1oxms.r . . . . 5 (𝜑𝑅 ∈ ∞MetSp)
5 eqid 2622 . . . . 5 ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
6 eqid 2622 . . . . 5 (dist‘𝑈) = (dist‘𝑈)
7 eqid 2622 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2622 . . . . . . . 8 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
97, 8xmsxmet 22261 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
104, 9syl 17 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)))
112sqxpeqd 5141 . . . . . . 7 (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅)))
1211reseq2d 5396 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))
132fveq2d 6195 . . . . . 6 (𝜑 → (∞Met‘𝑉) = (∞Met‘(Base‘𝑅)))
1410, 12, 133eltr4d 2716 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
151, 2, 3, 4, 5, 6, 14imasf1oxmet 22180 . . . 4 (𝜑 → (dist‘𝑈) ∈ (∞Met‘𝐵))
16 f1ofo 6144 . . . . . . 7 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
173, 16syl 17 . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
181, 2, 17, 4imasbas 16172 . . . . 5 (𝜑𝐵 = (Base‘𝑈))
1918fveq2d 6195 . . . 4 (𝜑 → (∞Met‘𝐵) = (∞Met‘(Base‘𝑈)))
2015, 19eleqtrd 2703 . . 3 (𝜑 → (dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)))
21 ssid 3624 . . 3 (Base‘𝑈) ⊆ (Base‘𝑈)
22 xmetres2 22166 . . 3 (((dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)))
2320, 21, 22sylancl 694 . 2 (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)))
24 eqid 2622 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
25 eqid 2622 . . . 4 (TopOpen‘𝑈) = (TopOpen‘𝑈)
261, 2, 17, 4, 24, 25imastopn 21523 . . 3 (𝜑 → (TopOpen‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
2724, 7, 8xmstopn 22256 . . . . . 6 (𝑅 ∈ ∞MetSp → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
284, 27syl 17 . . . . 5 (𝜑 → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
2912fveq2d 6195 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))
3028, 29eqtr4d 2659 . . . 4 (𝜑 → (TopOpen‘𝑅) = (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))
3130oveq1d 6665 . . 3 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) = ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹))
32 blbas 22235 . . . . . 6 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases)
3314, 32syl 17 . . . . 5 (𝜑 → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases)
34 unirnbl 22225 . . . . . . 7 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉)
35 f1oeq2 6128 . . . . . . 7 ( ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = 𝑉 → (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹:𝑉1-1-onto𝐵))
3614, 34, 353syl 18 . . . . . 6 (𝜑 → (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹:𝑉1-1-onto𝐵))
373, 36mpbird 247 . . . . 5 (𝜑𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵)
38 eqid 2622 . . . . . 6 ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))
3938tgqtop 21515 . . . . 5 ((ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵) → ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
4033, 37, 39syl2anc 693 . . . 4 (𝜑 → ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
41 eqid 2622 . . . . . . 7 (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))
4241mopnval 22243 . . . . . 6 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))
4314, 42syl 17 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) = (topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))))
4443oveq1d 6665 . . . 4 (𝜑 → ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = ((topGen‘ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) qTop 𝐹))
45 eqid 2622 . . . . . . 7 (MetOpen‘(dist‘𝑈)) = (MetOpen‘(dist‘𝑈))
4645mopnval 22243 . . . . . 6 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (MetOpen‘(dist‘𝑈)) = (topGen‘ran (ball‘(dist‘𝑈))))
4715, 46syl 17 . . . . 5 (𝜑 → (MetOpen‘(dist‘𝑈)) = (topGen‘ran (ball‘(dist‘𝑈))))
48 xmetf 22134 . . . . . . . 8 ((dist‘𝑈) ∈ (∞Met‘(Base‘𝑈)) → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*)
4920, 48syl 17 . . . . . . 7 (𝜑 → (dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ*)
50 ffn 6045 . . . . . . 7 ((dist‘𝑈):((Base‘𝑈) × (Base‘𝑈))⟶ℝ* → (dist‘𝑈) Fn ((Base‘𝑈) × (Base‘𝑈)))
51 fnresdm 6000 . . . . . . 7 ((dist‘𝑈) Fn ((Base‘𝑈) × (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = (dist‘𝑈))
5249, 50, 513syl 18 . . . . . 6 (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = (dist‘𝑈))
5352fveq2d 6195 . . . . 5 (𝜑 → (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (MetOpen‘(dist‘𝑈)))
543ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉1-1-onto𝐵)
55 f1of1 6136 . . . . . . . . . . . . . . 15 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1𝐵)
5654, 55syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉1-1𝐵)
57 cnvimass 5485 . . . . . . . . . . . . . . 15 (𝐹𝑥) ⊆ dom 𝐹
58 f1odm 6141 . . . . . . . . . . . . . . . 16 (𝐹:𝑉1-1-onto𝐵 → dom 𝐹 = 𝑉)
5954, 58syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → dom 𝐹 = 𝑉)
6057, 59syl5sseq 3653 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹𝑥) ⊆ 𝑉)
6114ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
62 simprl 794 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑦𝑉)
63 simprr 796 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
64 blssm 22223 . . . . . . . . . . . . . . 15 ((((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) ∧ 𝑦𝑉𝑟 ∈ ℝ*) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)
6561, 62, 63, 64syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)
66 f1imaeq 6522 . . . . . . . . . . . . . 14 ((𝐹:𝑉1-1𝐵 ∧ ((𝐹𝑥) ⊆ 𝑉 ∧ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ⊆ 𝑉)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
6756, 60, 65, 66syl12anc 1324 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
6854, 16syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝐹:𝑉onto𝐵)
69 simplr 792 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑥𝐵)
70 foimacnv 6154 . . . . . . . . . . . . . . 15 ((𝐹:𝑉onto𝐵𝑥𝐵) → (𝐹 “ (𝐹𝑥)) = 𝑥)
7168, 69, 70syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹 “ (𝐹𝑥)) = 𝑥)
721ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑈 = (𝐹s 𝑅))
732ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑉 = (Base‘𝑅))
744ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → 𝑅 ∈ ∞MetSp)
7572, 73, 54, 74, 5, 6, 61, 62, 63imasf1obl 22293 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
7675eqcomd 2628 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟))
7771, 76eqeq12d 2637 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹 “ (𝐹𝑥)) = (𝐹 “ (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
7867, 77bitr3d 270 . . . . . . . . . . . 12 (((𝜑𝑥𝐵) ∧ (𝑦𝑉𝑟 ∈ ℝ*)) → ((𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
79782rexbidva 3056 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
803adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → 𝐹:𝑉1-1-onto𝐵)
81 f1ofn 6138 . . . . . . . . . . . 12 (𝐹:𝑉1-1-onto𝐵𝐹 Fn 𝑉)
82 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑦) → (𝑧(ball‘(dist‘𝑈))𝑟) = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟))
8382eqeq2d 2632 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑦) → (𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8483rexbidv 3052 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑦) → (∃𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8584rexrn 6361 . . . . . . . . . . . 12 (𝐹 Fn 𝑉 → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
8680, 81, 853syl 18 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* 𝑥 = ((𝐹𝑦)(ball‘(dist‘𝑈))𝑟)))
87 forn 6118 . . . . . . . . . . . . 13 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
8880, 16, 873syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → ran 𝐹 = 𝐵)
8988rexeqdv 3145 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (∃𝑧 ∈ ran 𝐹𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9079, 86, 893bitr2d 296 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9114adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉))
92 blrn 22214 . . . . . . . . . . 11 (((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (∞Met‘𝑉) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
9391, 92syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ ∃𝑦𝑉𝑟 ∈ ℝ* (𝐹𝑥) = (𝑦(ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))𝑟)))
9415adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (dist‘𝑈) ∈ (∞Met‘𝐵))
95 blrn 22214 . . . . . . . . . . 11 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9694, 95syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ ∃𝑧𝐵𝑟 ∈ ℝ* 𝑥 = (𝑧(ball‘(dist‘𝑈))𝑟)))
9790, 93, 963bitr4d 300 . . . . . . . . 9 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈))))
9897pm5.32da 673 . . . . . . . 8 (𝜑 → ((𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))) ↔ (𝑥𝐵𝑥 ∈ ran (ball‘(dist‘𝑈)))))
99 f1ofo 6144 . . . . . . . . . 10 (𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–1-1-onto𝐵𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵)
10037, 99syl 17 . . . . . . . . 9 (𝜑𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵)
10138elqtop2 21504 . . . . . . . . 9 ((ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) ∈ TopBases ∧ 𝐹: ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉)))–onto𝐵) → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))))
10233, 100, 101syl2anc 693 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))))))
103 blf 22212 . . . . . . . . . . . 12 ((dist‘𝑈) ∈ (∞Met‘𝐵) → (ball‘(dist‘𝑈)):(𝐵 × ℝ*)⟶𝒫 𝐵)
104 frn 6053 . . . . . . . . . . . 12 ((ball‘(dist‘𝑈)):(𝐵 × ℝ*)⟶𝒫 𝐵 → ran (ball‘(dist‘𝑈)) ⊆ 𝒫 𝐵)
10515, 103, 1043syl 18 . . . . . . . . . . 11 (𝜑 → ran (ball‘(dist‘𝑈)) ⊆ 𝒫 𝐵)
106105sseld 3602 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥 ∈ 𝒫 𝐵))
107 elpwi 4168 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
108106, 107syl6 35 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) → 𝑥𝐵))
109108pm4.71rd 667 . . . . . . . 8 (𝜑 → (𝑥 ∈ ran (ball‘(dist‘𝑈)) ↔ (𝑥𝐵𝑥 ∈ ran (ball‘(dist‘𝑈)))))
11098, 102, 1093bitr4d 300 . . . . . . 7 (𝜑 → (𝑥 ∈ (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) ↔ 𝑥 ∈ ran (ball‘(dist‘𝑈))))
111110eqrdv 2620 . . . . . 6 (𝜑 → (ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = ran (ball‘(dist‘𝑈)))
112111fveq2d 6195 . . . . 5 (𝜑 → (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)) = (topGen‘ran (ball‘(dist‘𝑈))))
11347, 53, 1123eqtr4d 2666 . . . 4 (𝜑 → (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))) = (topGen‘(ran (ball‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹)))
11440, 44, 1133eqtr4d 2666 . . 3 (𝜑 → ((MetOpen‘((dist‘𝑅) ↾ (𝑉 × 𝑉))) qTop 𝐹) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))))
11526, 31, 1143eqtrd 2660 . 2 (𝜑 → (TopOpen‘𝑈) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))))
116 eqid 2622 . . 3 (Base‘𝑈) = (Base‘𝑈)
117 eqid 2622 . . 3 ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))
11825, 116, 117isxms2 22253 . 2 (𝑈 ∈ ∞MetSp ↔ (((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (∞Met‘(Base‘𝑈)) ∧ (TopOpen‘𝑈) = (MetOpen‘((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))))))
11923, 115, 118sylanbrc 698 1 (𝜑𝑈 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  wss 3574  𝒫 cpw 4158   cuni 4436   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117   Fn wfn 5883  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  *cxr 10073  Basecbs 15857  distcds 15950  TopOpenctopn 16082  topGenctg 16098   qTop cqtop 16163  s cimas 16164  ∞Metcxmt 19731  ballcbl 19733  MetOpencmopn 19736  TopBasesctb 20749  ∞MetSpcxme 22122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-xrs 16162  df-qtop 16167  df-imas 16168  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125
This theorem is referenced by:  imasf1oms  22295  xpsxms  22339
  Copyright terms: Public domain W3C validator