Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunincfi Structured version   Visualization version   GIF version

Theorem iunincfi 39272
Description: Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunincfi.1 (𝜑𝑁 ∈ (ℤ𝑀))
iunincfi.2 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
Assertion
Ref Expression
iunincfi (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) = (𝐹𝑁))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑀   𝑛,𝑁   𝜑,𝑛

Proof of Theorem iunincfi
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4524 . . . . . . 7 (𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ↔ ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
21biimpi 206 . . . . . 6 (𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) → ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
32adantl 482 . . . . 5 ((𝜑𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)) → ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
4 elfzuz3 12339 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑛))
54adantl 482 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑛))
6 simpll 790 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝜑)
7 elfzuz 12338 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
8 fzoss1 12495 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑀) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝑀...𝑁) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
109adantr 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
11 simpr 477 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑛..^𝑁))
1210, 11sseldd 3604 . . . . . . . . . . . . 13 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑀..^𝑁))
1312adantll 750 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑀..^𝑁))
14 eleq1 2689 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑛 ∈ (𝑀..^𝑁) ↔ 𝑚 ∈ (𝑀..^𝑁)))
1514anbi2d 740 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝜑𝑛 ∈ (𝑀..^𝑁)) ↔ (𝜑𝑚 ∈ (𝑀..^𝑁))))
16 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
17 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
1817fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑚 + 1)))
1916, 18sseq12d 3634 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1))))
2015, 19imbi12d 334 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))))
21 iunincfi.2 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
2220, 21chvarv 2263 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
236, 13, 22syl2anc 693 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
245, 23ssinc 39264 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐹𝑛) ⊆ (𝐹𝑁))
25243adant3 1081 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → (𝐹𝑛) ⊆ (𝐹𝑁))
26 simp3 1063 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑛))
2725, 26sseldd 3604 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
28273exp 1264 . . . . . . 7 (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝐹𝑛) → 𝑥 ∈ (𝐹𝑁))))
2928rexlimdv 3030 . . . . . 6 (𝜑 → (∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛) → 𝑥 ∈ (𝐹𝑁)))
3029imp 445 . . . . 5 ((𝜑 ∧ ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
313, 30syldan 487 . . . 4 ((𝜑𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
3231ralrimiva 2966 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)𝑥 ∈ (𝐹𝑁))
33 dfss3 3592 . . 3 ( 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ⊆ (𝐹𝑁) ↔ ∀𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)𝑥 ∈ (𝐹𝑁))
3432, 33sylibr 224 . 2 (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ⊆ (𝐹𝑁))
35 iunincfi.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
36 eluzfz2 12349 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
3735, 36syl 17 . . 3 (𝜑𝑁 ∈ (𝑀...𝑁))
38 fveq2 6191 . . . 4 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
3938ssiun2s 4564 . . 3 (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑁) ⊆ 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛))
4037, 39syl 17 . 2 (𝜑 → (𝐹𝑁) ⊆ 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛))
4134, 40eqssd 3620 1 (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) = (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   ciun 4520  cfv 5888  (class class class)co 6650  1c1 9937   + caddc 9939  cuz 11687  ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  meaiuninclem  40697
  Copyright terms: Public domain W3C validator