| Step | Hyp | Ref
| Expression |
| 1 | | ssinc.1 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | eluzel2 11692 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 4 | | eluzelz 11697 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 5 | 1, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 6 | 3, 5 | jca 554 |
. . 3
⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 7 | | eluzle 11700 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| 8 | 1, 7 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| 9 | 5 | zred 11482 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 10 | 9 | leidd 10594 |
. . . 4
⊢ (𝜑 → 𝑁 ≤ 𝑁) |
| 11 | 5, 8, 10 | 3jca 1242 |
. . 3
⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁)) |
| 12 | 6, 11 | jca 554 |
. 2
⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁))) |
| 13 | | id 22 |
. 2
⊢ (𝜑 → 𝜑) |
| 14 | | fveq2 6191 |
. . . . 5
⊢ (𝑛 = 𝑀 → (𝐹‘𝑛) = (𝐹‘𝑀)) |
| 15 | 14 | sseq2d 3633 |
. . . 4
⊢ (𝑛 = 𝑀 → ((𝐹‘𝑀) ⊆ (𝐹‘𝑛) ↔ (𝐹‘𝑀) ⊆ (𝐹‘𝑀))) |
| 16 | 15 | imbi2d 330 |
. . 3
⊢ (𝑛 = 𝑀 → ((𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑛)) ↔ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑀)))) |
| 17 | | fveq2 6191 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
| 18 | 17 | sseq2d 3633 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑀) ⊆ (𝐹‘𝑛) ↔ (𝐹‘𝑀) ⊆ (𝐹‘𝑚))) |
| 19 | 18 | imbi2d 330 |
. . 3
⊢ (𝑛 = 𝑚 → ((𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑛)) ↔ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑚)))) |
| 20 | | fveq2 6191 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝐹‘𝑛) = (𝐹‘(𝑚 + 1))) |
| 21 | 20 | sseq2d 3633 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝐹‘𝑀) ⊆ (𝐹‘𝑛) ↔ (𝐹‘𝑀) ⊆ (𝐹‘(𝑚 + 1)))) |
| 22 | 21 | imbi2d 330 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑛)) ↔ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘(𝑚 + 1))))) |
| 23 | | fveq2 6191 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝐹‘𝑛) = (𝐹‘𝑁)) |
| 24 | 23 | sseq2d 3633 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝐹‘𝑀) ⊆ (𝐹‘𝑛) ↔ (𝐹‘𝑀) ⊆ (𝐹‘𝑁))) |
| 25 | 24 | imbi2d 330 |
. . 3
⊢ (𝑛 = 𝑁 → ((𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑛)) ↔ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑁)))) |
| 26 | | ssid 3624 |
. . . . 5
⊢ (𝐹‘𝑀) ⊆ (𝐹‘𝑀) |
| 27 | 26 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑀)) |
| 28 | 27 | a1i 11 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑀))) |
| 29 | | simpr 477 |
. . . . . . 7
⊢ (((𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑚)) ∧ 𝜑) → 𝜑) |
| 30 | | simpl 473 |
. . . . . . 7
⊢ (((𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑚)) ∧ 𝜑) → (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑚))) |
| 31 | | pm3.35 611 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑚))) → (𝐹‘𝑀) ⊆ (𝐹‘𝑚)) |
| 32 | 29, 30, 31 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑚)) ∧ 𝜑) → (𝐹‘𝑀) ⊆ (𝐹‘𝑚)) |
| 33 | 32 | 3adant1 1079 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑚)) ∧ 𝜑) → (𝐹‘𝑀) ⊆ (𝐹‘𝑚)) |
| 34 | | simpr 477 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝜑) |
| 35 | | simplll 798 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ) |
| 36 | | simplr1 1103 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ) |
| 37 | | simplr2 1104 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ≤ 𝑚) |
| 38 | 35, 36, 37 | 3jca 1242 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚)) |
| 39 | | eluz2 11693 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚)) |
| 40 | 38, 39 | sylibr 224 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ≥‘𝑀)) |
| 41 | | simpllr 799 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ) |
| 42 | | simplr3 1105 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁) |
| 43 | 40, 41, 42 | 3jca 1242 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁)) |
| 44 | | elfzo2 12473 |
. . . . . . . 8
⊢ (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁)) |
| 45 | 43, 44 | sylibr 224 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁)) |
| 46 | | ssinc.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 + 1))) |
| 47 | 34, 45, 46 | syl2anc 693 |
. . . . . 6
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ 𝜑) → (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 + 1))) |
| 48 | 47 | 3adant2 1080 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑚)) ∧ 𝜑) → (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 + 1))) |
| 49 | 33, 48 | sstrd 3613 |
. . . 4
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) ∧ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑚)) ∧ 𝜑) → (𝐹‘𝑀) ⊆ (𝐹‘(𝑚 + 1))) |
| 50 | 49 | 3exp 1264 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ≤ 𝑚 ∧ 𝑚 < 𝑁)) → ((𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑚)) → (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘(𝑚 + 1))))) |
| 51 | 16, 19, 22, 25, 28, 50 | fzind 11475 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁)) → (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑁))) |
| 52 | 12, 13, 51 | sylc 65 |
1
⊢ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑁)) |