Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpuztr Structured version   Visualization version   GIF version

Theorem iunrelexpuztr 38011
Description: The indexed union of relation exponentiation over upper integers is a transive relation. Generalized from rtrclreclem3 13800. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
mptiunrelexp.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpuztr ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑛,𝑀   𝑅,𝑛,𝑟   𝑛,𝑉
Allowed substitution hints:   𝑀(𝑟)   𝑉(𝑟)

Proof of Theorem iunrelexpuztr
Dummy variables 𝑥 𝑦 𝑧 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 6680 . . . . . . . 8 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (𝑗 + 𝑖) ∈ V)
2 simprlr 803 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑗𝑁)
3 simpll2 1101 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑁 = (ℤ𝑀))
42, 3eleqtrd 2703 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑗 ∈ (ℤ𝑀))
5 simpll3 1102 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑀 ∈ ℕ0)
6 simprll 802 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖𝑁)
76, 3eleqtrd 2703 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖 ∈ (ℤ𝑀))
8 eluznn0 11757 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ0)
95, 7, 8syl2anc 693 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑖 ∈ ℕ0)
10 uzaddcl 11744 . . . . . . . . . . . 12 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑖 ∈ ℕ0) → (𝑗 + 𝑖) ∈ (ℤ𝑀))
114, 9, 10syl2anc 693 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → (𝑗 + 𝑖) ∈ (ℤ𝑀))
12 simplr 792 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑛 = (𝑗 + 𝑖))
1311, 12, 33eltr4d 2716 . . . . . . . . . 10 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑛𝑁)
14 vex 3203 . . . . . . . . . . . . 13 𝑥 ∈ V
15 vex 3203 . . . . . . . . . . . . 13 𝑧 ∈ V
16 vex 3203 . . . . . . . . . . . . 13 𝑦 ∈ V
17 brcogw 5290 . . . . . . . . . . . . . 14 (((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧)
1817ex 450 . . . . . . . . . . . . 13 ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ 𝑦 ∈ V) → ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧))
1914, 15, 16, 18mp3an 1424 . . . . . . . . . . . 12 ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧)
20 simpll3 1102 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀 ∈ ℕ0)
21 simprr 796 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
22 simpll2 1101 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 = (ℤ𝑀))
2321, 22eleqtrd 2703 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗 ∈ (ℤ𝑀))
24 eluznn0 11757 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℕ0)
2520, 23, 24syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗 ∈ ℕ0)
26 simprl 794 . . . . . . . . . . . . . . . . 17 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
2726, 22eleqtrd 2703 . . . . . . . . . . . . . . . 16 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 ∈ (ℤ𝑀))
2820, 27, 8syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖 ∈ ℕ0)
29 simpll1 1100 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅𝑉)
30 relexpaddss 38010 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ0𝑖 ∈ ℕ0𝑅𝑉) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟(𝑗 + 𝑖)))
3125, 28, 29, 30syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟(𝑗 + 𝑖)))
32 simplr 792 . . . . . . . . . . . . . . 15 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑛 = (𝑗 + 𝑖))
3332oveq2d 6666 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑗 + 𝑖)))
3431, 33sseqtr4d 3642 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖)) ⊆ (𝑅𝑟𝑛))
3534ssbrd 4696 . . . . . . . . . . . 12 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑥((𝑅𝑟𝑗) ∘ (𝑅𝑟𝑖))𝑧𝑥(𝑅𝑟𝑛)𝑧))
3619, 35syl5 34 . . . . . . . . . . 11 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) → 𝑥(𝑅𝑟𝑛)𝑧))
3736impr 649 . . . . . . . . . 10 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → 𝑥(𝑅𝑟𝑛)𝑧)
3813, 37jca 554 . . . . . . . . 9 ((((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) ∧ ((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧))) → (𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧))
3938ex 450 . . . . . . . 8 (((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) ∧ 𝑛 = (𝑗 + 𝑖)) → (((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → (𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
401, 39spcimedv 3292 . . . . . . 7 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
4140exlimdvv 1862 . . . . . 6 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)) → ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧)))
42 reeanv 3107 . . . . . . 7 (∃𝑖𝑁𝑗𝑁 (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) ↔ (∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧))
43 r2ex 3061 . . . . . . 7 (∃𝑖𝑁𝑗𝑁 (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧) ↔ ∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)))
4442, 43bitr3i 266 . . . . . 6 ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) ↔ ∃𝑖𝑗((𝑖𝑁𝑗𝑁) ∧ (𝑥(𝑅𝑟𝑖)𝑦𝑦(𝑅𝑟𝑗)𝑧)))
45 df-rex 2918 . . . . . 6 (∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧 ↔ ∃𝑛(𝑛𝑁𝑥(𝑅𝑟𝑛)𝑧))
4641, 44, 453imtr4g 285 . . . . 5 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4746alrimiv 1855 . . . 4 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4847alrimiv 1855 . . 3 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
4948alrimiv 1855 . 2 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
50 cotr 5508 . . . . 5 (((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅) ↔ ∀𝑥𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧))
51 mptiunrelexp.def . . . . . . . . . . . 12 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
5251briunov2uz 37990 . . . . . . . . . . 11 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑦 ↔ ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑦))
53 oveq2 6658 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → (𝑅𝑟𝑛) = (𝑅𝑟𝑖))
5453breqd 4664 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑥(𝑅𝑟𝑛)𝑦𝑥(𝑅𝑟𝑖)𝑦))
5554cbvrexv 3172 . . . . . . . . . . 11 (∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑦 ↔ ∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦)
5652, 55syl6bb 276 . . . . . . . . . 10 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑦 ↔ ∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦))
5751briunov2uz 37990 . . . . . . . . . . 11 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑦(𝐶𝑅)𝑧 ↔ ∃𝑛𝑁 𝑦(𝑅𝑟𝑛)𝑧))
58 oveq2 6658 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (𝑅𝑟𝑛) = (𝑅𝑟𝑗))
5958breqd 4664 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑦(𝑅𝑟𝑛)𝑧𝑦(𝑅𝑟𝑗)𝑧))
6059cbvrexv 3172 . . . . . . . . . . 11 (∃𝑛𝑁 𝑦(𝑅𝑟𝑛)𝑧 ↔ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧)
6157, 60syl6bb 276 . . . . . . . . . 10 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑦(𝐶𝑅)𝑧 ↔ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧))
6256, 61anbi12d 747 . . . . . . . . 9 ((𝑅𝑉𝑁 = (ℤ𝑀)) → ((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) ↔ (∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧)))
6351briunov2uz 37990 . . . . . . . . 9 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (𝑥(𝐶𝑅)𝑧 ↔ ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧))
6462, 63imbi12d 334 . . . . . . . 8 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6564albidv 1849 . . . . . . 7 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6665albidv 1849 . . . . . 6 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6766albidv 1849 . . . . 5 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑥𝑦𝑧((𝑥(𝐶𝑅)𝑦𝑦(𝐶𝑅)𝑧) → 𝑥(𝐶𝑅)𝑧) ↔ ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6850, 67syl5bb 272 . . . 4 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅) ↔ ∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧)))
6968biimprd 238 . . 3 ((𝑅𝑉𝑁 = (ℤ𝑀)) → (∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅)))
70693adant3 1081 . 2 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → (∀𝑥𝑦𝑧((∃𝑖𝑁 𝑥(𝑅𝑟𝑖)𝑦 ∧ ∃𝑗𝑁 𝑦(𝑅𝑟𝑗)𝑧) → ∃𝑛𝑁 𝑥(𝑅𝑟𝑛)𝑧) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅)))
7149, 70mpd 15 1 ((𝑅𝑉𝑁 = (ℤ𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶𝑅) ∘ (𝐶𝑅)) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  wrex 2913  Vcvv 3200  wss 3574   ciun 4520   class class class wbr 4653  cmpt 4729  ccom 5118  cfv 5888  (class class class)co 6650   + caddc 9939  0cn0 11292  cuz 11687  𝑟crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761
This theorem is referenced by:  dftrcl3  38012  dfrtrcl3  38025
  Copyright terms: Public domain W3C validator