| Step | Hyp | Ref
| Expression |
| 1 | | df-co 5123 |
. . 3
⊢
((t*rec‘𝑅)
∘ (t*rec‘𝑅)) =
{〈𝑒, 𝑔〉 ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)} |
| 2 | | elopab 4983 |
. . . . 5
⊢ (𝑑 ∈ {〈𝑒, 𝑔〉 ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)} ↔ ∃𝑒∃𝑔(𝑑 = 〈𝑒, 𝑔〉 ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔))) |
| 3 | | eqeq1 2626 |
. . . . . . . . . . 11
⊢ (𝑑 = 〈𝑒, 𝑔〉 → (𝑑 = 〈𝑒, 𝑔〉 ↔ 〈𝑒, 𝑔〉 = 〈𝑒, 𝑔〉)) |
| 4 | 3 | anbi1d 741 |
. . . . . . . . . 10
⊢ (𝑑 = 〈𝑒, 𝑔〉 → ((𝑑 = 〈𝑒, 𝑔〉 ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) ↔ (〈𝑒, 𝑔〉 = 〈𝑒, 𝑔〉 ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)))) |
| 5 | | simprr 796 |
. . . . . . . . . . . 12
⊢
((〈𝑒, 𝑔〉 = 〈𝑒, 𝑔〉 ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝜑) |
| 6 | | simprl 794 |
. . . . . . . . . . . 12
⊢
((〈𝑒, 𝑔〉 = 〈𝑒, 𝑔〉 ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)) |
| 7 | | simpl 473 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ 𝜑)) → 𝑒(t*rec‘𝑅)𝑓) |
| 8 | | simprr 796 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ 𝜑)) → 𝜑) |
| 9 | | rtrclreclem.rel |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Rel 𝑅) |
| 10 | | rtrclreclem.rex |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑅 ∈ V) |
| 11 | 9, 10 | dfrtrclrec2 13797 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑒(t*rec‘𝑅)𝑓 ↔ ∃𝑛 ∈ ℕ0 𝑒(𝑅↑𝑟𝑛)𝑓)) |
| 12 | 8, 11 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ 𝜑)) → (𝑒(t*rec‘𝑅)𝑓 ↔ ∃𝑛 ∈ ℕ0 𝑒(𝑅↑𝑟𝑛)𝑓)) |
| 13 | 7, 12 | mpbid 222 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ 𝜑)) → ∃𝑛 ∈ ℕ0 𝑒(𝑅↑𝑟𝑛)𝑓) |
| 14 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)))) → 𝑓(t*rec‘𝑅)𝑔) |
| 15 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)))) → 𝜑) |
| 16 | 9, 10 | dfrtrclrec2 13797 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑓(t*rec‘𝑅)𝑔 ↔ ∃𝑚 ∈ ℕ0 𝑓(𝑅↑𝑟𝑚)𝑔)) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)))) → (𝑓(t*rec‘𝑅)𝑔 ↔ ∃𝑚 ∈ ℕ0 𝑓(𝑅↑𝑟𝑚)𝑔)) |
| 18 | 14, 17 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)))) →
∃𝑚 ∈
ℕ0 𝑓(𝑅↑𝑟𝑚)𝑔) |
| 19 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))) → 𝑛 ∈
ℕ0) |
| 20 | 19 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))) → 𝑛 ∈
ℕ0) |
| 21 | 20 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) →
𝑛 ∈
ℕ0) |
| 22 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝑛 ∈ ℕ0
∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)) → 𝑚 ∈
ℕ0) |
| 23 | 22 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))) → 𝑚 ∈
ℕ0) |
| 24 | 23 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))) → 𝑚 ∈
ℕ0) |
| 25 | 24 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))) → 𝑚 ∈
ℕ0) |
| 26 | 25 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) →
𝑚 ∈
ℕ0) |
| 27 | 21, 26 | nn0addcld 11355 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) →
(𝑛 + 𝑚) ∈
ℕ0) |
| 28 | 21 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑛 ∈
ℕ0) |
| 29 | 28 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑛 ∈
ℂ) |
| 30 | 26 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑚 ∈
ℕ0) |
| 31 | 30 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑚 ∈
ℂ) |
| 32 | 29, 31 | addcomd 10238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
(𝑛 + 𝑚) = (𝑚 + 𝑛)) |
| 33 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝑛 + 𝑚) = (𝑚 + 𝑛) → ((𝑛 + 𝑚) ∈ ℕ0 ↔ (𝑚 + 𝑛) ∈
ℕ0)) |
| 34 | 33 | anbi1d 741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) ↔
((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈
ℕ0))))))))) |
| 35 | 26 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑚 ∈
ℕ0) |
| 36 | 21 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑛 ∈
ℕ0) |
| 37 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 49
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) →
𝜑) |
| 38 | 37 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝜑) |
| 39 | 38, 9 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) → Rel
𝑅) |
| 40 | 38, 10 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑅 ∈
V) |
| 41 | 39, 40 | relexpaddd 13794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
((𝑚 ∈
ℕ0 ∧ 𝑛
∈ ℕ0) → ((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛)) = (𝑅↑𝑟(𝑚 + 𝑛)))) |
| 42 | 35, 36, 41 | mp2and 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛)) = (𝑅↑𝑟(𝑚 + 𝑛))) |
| 43 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (𝑅↑𝑟(𝑛 + 𝑚)) = (𝑅↑𝑟(𝑚 + 𝑛))) |
| 44 | 43 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛)) = (𝑅↑𝑟(𝑛 + 𝑚)) ↔ ((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛)) = (𝑅↑𝑟(𝑚 + 𝑛)))) |
| 45 | 42, 44 | syl5ibr 236 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑚 + 𝑛) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛)) = (𝑅↑𝑟(𝑛 + 𝑚)))) |
| 46 | 34, 45 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((𝑛 + 𝑚) = (𝑚 + 𝑛) → (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛)) = (𝑅↑𝑟(𝑛 + 𝑚)))) |
| 47 | 32, 46 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛)) = (𝑅↑𝑟(𝑛 + 𝑚))) |
| 48 | 47 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
(𝑅↑𝑟(𝑛 + 𝑚)) = ((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛))) |
| 49 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))) → 𝑒(𝑅↑𝑟𝑛)𝑓) |
| 50 | 49 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) →
𝑒(𝑅↑𝑟𝑛)𝑓) |
| 51 | 50 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑒(𝑅↑𝑟𝑛)𝑓) |
| 52 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))) → 𝑓(𝑅↑𝑟𝑚)𝑔) |
| 53 | 52 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))) → 𝑓(𝑅↑𝑟𝑚)𝑔) |
| 54 | 53 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))) → 𝑓(𝑅↑𝑟𝑚)𝑔) |
| 55 | 54 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) →
𝑓(𝑅↑𝑟𝑚)𝑔) |
| 56 | 55 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑓(𝑅↑𝑟𝑚)𝑔) |
| 57 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ 𝑓 ∈ V |
| 58 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ (ℎ = 𝑓 → (𝑒(𝑅↑𝑟𝑛)ℎ ↔ 𝑒(𝑅↑𝑟𝑛)𝑓)) |
| 59 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ (ℎ = 𝑓 → (ℎ(𝑅↑𝑟𝑚)𝑔 ↔ 𝑓(𝑅↑𝑟𝑚)𝑔)) |
| 60 | 58, 59 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (ℎ = 𝑓 → ((𝑒(𝑅↑𝑟𝑛)ℎ ∧ ℎ(𝑅↑𝑟𝑚)𝑔) ↔ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑓(𝑅↑𝑟𝑚)𝑔))) |
| 61 | 57, 60 | spcev 3300 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑓(𝑅↑𝑟𝑚)𝑔) → ∃ℎ(𝑒(𝑅↑𝑟𝑛)ℎ ∧ ℎ(𝑅↑𝑟𝑚)𝑔)) |
| 62 | 51, 56, 61 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
∃ℎ(𝑒(𝑅↑𝑟𝑛)ℎ ∧ ℎ(𝑅↑𝑟𝑚)𝑔)) |
| 63 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ 𝑒 ∈ V |
| 64 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ 𝑔 ∈ V |
| 65 | 63, 64 | brco 5292 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑒((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛))𝑔 ↔ ∃ℎ(𝑒(𝑅↑𝑟𝑛)ℎ ∧ ℎ(𝑅↑𝑟𝑚)𝑔)) |
| 66 | 62, 65 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑒((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛))𝑔) |
| 67 | | breq 4655 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑅↑𝑟(𝑛 + 𝑚)) = ((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛)) → (𝑒(𝑅↑𝑟(𝑛 + 𝑚))𝑔 ↔ 𝑒((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛))𝑔)) |
| 68 | 66, 67 | syl5ibr 236 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑅↑𝑟(𝑛 + 𝑚)) = ((𝑅↑𝑟𝑚) ∘ (𝑅↑𝑟𝑛)) → (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑒(𝑅↑𝑟(𝑛 + 𝑚))𝑔)) |
| 69 | 48, 68 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
𝑒(𝑅↑𝑟(𝑛 + 𝑚))𝑔) |
| 70 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑖 = (𝑛 + 𝑚) → (𝑅↑𝑟𝑖) = (𝑅↑𝑟(𝑛 + 𝑚))) |
| 71 | 70 | breqd 4664 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑖 = (𝑛 + 𝑚) → (𝑒(𝑅↑𝑟𝑖)𝑔 ↔ 𝑒(𝑅↑𝑟(𝑛 + 𝑚))𝑔)) |
| 72 | 71 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ 𝑒(𝑅↑𝑟(𝑛 + 𝑚))𝑔) → ∃𝑖 ∈ ℕ0 𝑒(𝑅↑𝑟𝑖)𝑔) |
| 73 | 69, 72 | syldan 487 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑛 + 𝑚) ∈ ℕ0 ∧ (𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))))) →
∃𝑖 ∈
ℕ0 𝑒(𝑅↑𝑟𝑖)𝑔) |
| 74 | 27, 73 | mpancom 703 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) →
∃𝑖 ∈
ℕ0 𝑒(𝑅↑𝑟𝑖)𝑔) |
| 75 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑒(t*rec‘𝑅)𝑔 ↔ 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)) |
| 76 | 37, 9 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) → Rel
𝑅) |
| 77 | 37, 10 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) →
𝑅 ∈
V) |
| 78 | 76, 77 | dfrtrclrec2 13797 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) →
(𝑒(t*rec‘𝑅)𝑔 ↔ ∃𝑖 ∈ ℕ0 𝑒(𝑅↑𝑟𝑖)𝑔)) |
| 79 | 75, 78 | syl5bbr 274 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) →
(〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅) ↔ ∃𝑖 ∈ ℕ0
𝑒(𝑅↑𝑟𝑖)𝑔)) |
| 80 | 74, 79 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))))) →
〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)) |
| 81 | 80 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))))) →
(𝑒(t*rec‘𝑅)𝑓 → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 82 | 81 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)))) → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)))) |
| 83 | 82 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑒(𝑅↑𝑟𝑛)𝑓 ∧ (𝑛 ∈ ℕ0 ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))) → (𝜑 → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))))) |
| 84 | 83 | anassrs 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0) ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)) → (𝜑 → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))))) |
| 85 | 84 | impcom 446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ ((𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0) ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))) → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)))) |
| 86 | 85 | anassrs 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)) ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)) → (𝑓(t*rec‘𝑅)𝑔 → (𝑒(t*rec‘𝑅)𝑓 → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)))) |
| 87 | 86 | impcom 446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓(t*rec‘𝑅)𝑔 ∧ ((𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)) ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))) → (𝑒(t*rec‘𝑅)𝑓 → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 88 | 87 | anassrs 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0))) ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)) → (𝑒(t*rec‘𝑅)𝑓 → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 89 | 88 | impcom 446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0))) ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0))) →
〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)) |
| 90 | 89 | anassrs 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)))) ∧ (𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0)) →
〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)) |
| 91 | 90 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓(𝑅↑𝑟𝑚)𝑔 ∧ 𝑚 ∈ ℕ0) → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)))) →
〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 92 | 91 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ (𝑓(𝑅↑𝑟𝑚)𝑔 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)))) →
〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)))) |
| 93 | 92 | rexlimiv 3027 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑚 ∈
ℕ0 𝑓(𝑅↑𝑟𝑚)𝑔 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)))) →
〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 94 | 18, 93 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)))) →
〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)) |
| 95 | 94 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓(t*rec‘𝑅)𝑔 ∧ (𝜑 ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0))) → (𝑒(t*rec‘𝑅)𝑓 → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 96 | 95 | anassrs 680 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓(t*rec‘𝑅)𝑔 ∧ 𝜑) ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)) → (𝑒(t*rec‘𝑅)𝑓 → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 97 | 96 | impcom 446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ ((𝑓(t*rec‘𝑅)𝑔 ∧ 𝜑) ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0))) →
〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)) |
| 98 | 97 | anassrs 680 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ 𝜑)) ∧ (𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0)) →
〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)) |
| 99 | 98 | expcom 451 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒(𝑅↑𝑟𝑛)𝑓 ∧ 𝑛 ∈ ℕ0) → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ 𝜑)) → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 100 | 99 | expcom 451 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ (𝑒(𝑅↑𝑟𝑛)𝑓 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ 𝜑)) → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)))) |
| 101 | 100 | rexlimiv 3027 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑛 ∈
ℕ0 𝑒(𝑅↑𝑟𝑛)𝑓 → ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ 𝜑)) → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 102 | 13, 101 | mpcom 38 |
. . . . . . . . . . . . . . 15
⊢ ((𝑒(t*rec‘𝑅)𝑓 ∧ (𝑓(t*rec‘𝑅)𝑔 ∧ 𝜑)) → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)) |
| 103 | 102 | anassrs 680 |
. . . . . . . . . . . . . 14
⊢ (((𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑) → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)) |
| 104 | 103 | expcom 451 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔) → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 105 | 104 | exlimdv 1861 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔) → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 106 | 5, 6, 105 | sylc 65 |
. . . . . . . . . . 11
⊢
((〈𝑒, 𝑔〉 = 〈𝑒, 𝑔〉 ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅)) |
| 107 | | eleq1 2689 |
. . . . . . . . . . 11
⊢ (𝑑 = 〈𝑒, 𝑔〉 → (𝑑 ∈ (t*rec‘𝑅) ↔ 〈𝑒, 𝑔〉 ∈ (t*rec‘𝑅))) |
| 108 | 106, 107 | syl5ibr 236 |
. . . . . . . . . 10
⊢ (𝑑 = 〈𝑒, 𝑔〉 → ((〈𝑒, 𝑔〉 = 〈𝑒, 𝑔〉 ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝑑 ∈ (t*rec‘𝑅))) |
| 109 | 4, 108 | sylbid 230 |
. . . . . . . . 9
⊢ (𝑑 = 〈𝑒, 𝑔〉 → ((𝑑 = 〈𝑒, 𝑔〉 ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝑑 ∈ (t*rec‘𝑅))) |
| 110 | 109 | anabsi5 858 |
. . . . . . . 8
⊢ ((𝑑 = 〈𝑒, 𝑔〉 ∧ (∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔) ∧ 𝜑)) → 𝑑 ∈ (t*rec‘𝑅)) |
| 111 | 110 | anassrs 680 |
. . . . . . 7
⊢ (((𝑑 = 〈𝑒, 𝑔〉 ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)) ∧ 𝜑) → 𝑑 ∈ (t*rec‘𝑅)) |
| 112 | 111 | expcom 451 |
. . . . . 6
⊢ (𝜑 → ((𝑑 = 〈𝑒, 𝑔〉 ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)) → 𝑑 ∈ (t*rec‘𝑅))) |
| 113 | 112 | exlimdvv 1862 |
. . . . 5
⊢ (𝜑 → (∃𝑒∃𝑔(𝑑 = 〈𝑒, 𝑔〉 ∧ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)) → 𝑑 ∈ (t*rec‘𝑅))) |
| 114 | 2, 113 | syl5bi 232 |
. . . 4
⊢ (𝜑 → (𝑑 ∈ {〈𝑒, 𝑔〉 ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)} → 𝑑 ∈ (t*rec‘𝑅))) |
| 115 | | eleq2 2690 |
. . . . 5
⊢
(((t*rec‘𝑅)
∘ (t*rec‘𝑅)) =
{〈𝑒, 𝑔〉 ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)} → (𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ↔ 𝑑 ∈ {〈𝑒, 𝑔〉 ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)})) |
| 116 | 115 | imbi1d 331 |
. . . 4
⊢
(((t*rec‘𝑅)
∘ (t*rec‘𝑅)) =
{〈𝑒, 𝑔〉 ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)} → ((𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) → 𝑑 ∈ (t*rec‘𝑅)) ↔ (𝑑 ∈ {〈𝑒, 𝑔〉 ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)} → 𝑑 ∈ (t*rec‘𝑅)))) |
| 117 | 114, 116 | syl5ibr 236 |
. . 3
⊢
(((t*rec‘𝑅)
∘ (t*rec‘𝑅)) =
{〈𝑒, 𝑔〉 ∣ ∃𝑓(𝑒(t*rec‘𝑅)𝑓 ∧ 𝑓(t*rec‘𝑅)𝑔)} → (𝜑 → (𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) → 𝑑 ∈ (t*rec‘𝑅)))) |
| 118 | 1, 117 | ax-mp 5 |
. 2
⊢ (𝜑 → (𝑑 ∈ ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) → 𝑑 ∈ (t*rec‘𝑅))) |
| 119 | 118 | ssrdv 3609 |
1
⊢ (𝜑 → ((t*rec‘𝑅) ∘ (t*rec‘𝑅)) ⊆ (t*rec‘𝑅)) |