MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxlb Structured version   Visualization version   Unicode version

Theorem ixxlb 12197
Description: Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxub.2  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <  B  ->  w S B ) )
ixxub.3  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w  <_  B ) )
ixxub.4  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )
ixxub.5  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )
Assertion
Ref Expression
ixxlb  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  -> inf ( ( A O B ) ,  RR* ,  <  )  =  A )
Distinct variable groups:    x, w, y, z, A    w, O    w, B, x, y, z   
x, R, y, z   
x, S, y, z
Allowed substitution hints:    R( w)    S( w)    O( x, y, z)

Proof of Theorem ixxlb
StepHypRef Expression
1 ixx.1 . . . . . . . . 9  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21elixx1 12184 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
323adant3 1081 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
43biimpa 501 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  (
w  e.  RR*  /\  A R w  /\  w S B ) )
54simp1d 1073 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w  e.  RR* )
65ex 450 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( w  e.  ( A O B )  ->  w  e.  RR* ) )
76ssrdv 3609 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( A O B )  C_  RR* )
8 infxrcl 12163 . . 3  |-  ( ( A O B ) 
C_  RR*  -> inf ( ( A O B ) , 
RR* ,  <  )  e. 
RR* )
97, 8syl 17 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  -> inf ( ( A O B ) ,  RR* ,  <  )  e.  RR* )
10 simp1 1061 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A  e. 
RR* )
11 simprr 796 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  w  < inf ( ( A O B ) ,  RR* ,  <  ) )
127ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  ( A O B )  C_  RR* )
13 qre 11793 . . . . . . . . . . 11  |-  ( w  e.  QQ  ->  w  e.  RR )
1413rexrd 10089 . . . . . . . . . 10  |-  ( w  e.  QQ  ->  w  e.  RR* )
1514ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  w  e.  RR* )
16 simprl 794 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  A  <  w )
1710ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  A  e.  RR* )
18 ixxub.4 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )
1917, 15, 18syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  ( A  <  w  ->  A R w ) )
2016, 19mpd 15 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  A R w )
219ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  -> inf ( ( A O B ) ,  RR* ,  <  )  e.  RR* )
22 simpll2 1101 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  B  e.  RR* )
23 simp3 1063 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( A O B )  =/=  (/) )
24 n0 3931 . . . . . . . . . . . . . 14  |-  ( ( A O B )  =/=  (/)  <->  E. w  w  e.  ( A O B ) )
2523, 24sylib 208 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  E. w  w  e.  ( A O B ) )
269adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  -> inf ( ( A O B ) ,  RR* ,  <  )  e.  RR* )
27 simpl2 1065 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  B  e.  RR* )
28 infxrlb 12164 . . . . . . . . . . . . . . 15  |-  ( ( ( A O B )  C_  RR*  /\  w  e.  ( A O B ) )  -> inf ( ( A O B ) ,  RR* ,  <  )  <_  w )
297, 28sylan 488 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  -> inf ( ( A O B ) ,  RR* ,  <  )  <_  w )
304simp3d 1075 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w S B )
31 ixxub.3 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w  <_  B ) )
325, 27, 31syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  (
w S B  ->  w  <_  B ) )
3330, 32mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  w  <_  B )
3426, 5, 27, 29, 33xrletrd 11993 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  -> inf ( ( A O B ) ,  RR* ,  <  )  <_  B )
3525, 34exlimddv 1863 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  -> inf ( ( A O B ) ,  RR* ,  <  )  <_  B )
3635ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  -> inf ( ( A O B ) ,  RR* ,  <  )  <_  B )
3715, 21, 22, 11, 36xrltletrd 11992 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  w  <  B )
38 ixxub.2 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <  B  ->  w S B ) )
3915, 22, 38syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  (
w  <  B  ->  w S B ) )
4037, 39mpd 15 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  w S B )
413ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
4215, 20, 40, 41mpbir3and 1245 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  w  e.  ( A O B ) )
4312, 42, 28syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  -> inf ( ( A O B ) ,  RR* ,  <  )  <_  w )
4421, 15xrlenltd 10104 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  (inf ( ( A O B ) ,  RR* ,  <  )  <_  w  <->  -.  w  < inf ( ( A O B ) , 
RR* ,  <  ) ) )
4543, 44mpbid 222 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  /\  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  )
) )  ->  -.  w  < inf ( ( A O B ) , 
RR* ,  <  ) )
4611, 45pm2.65da 600 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  QQ )  ->  -.  ( A  <  w  /\  w  < inf ( ( A O B ) , 
RR* ,  <  ) ) )
4746nrexdv 3001 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  -.  E. w  e.  QQ  ( A  <  w  /\  w  < inf ( ( A O B ) ,  RR* ,  <  ) ) )
48 qbtwnxr 12031 . . . . . 6  |-  ( ( A  e.  RR*  /\ inf (
( A O B ) ,  RR* ,  <  )  e.  RR*  /\  A  < inf ( ( A O B ) ,  RR* ,  <  ) )  ->  E. w  e.  QQ  ( A  <  w  /\  w  < inf ( ( A O B ) , 
RR* ,  <  ) ) )
49483expia 1267 . . . . 5  |-  ( ( A  e.  RR*  /\ inf (
( A O B ) ,  RR* ,  <  )  e.  RR* )  ->  ( A  < inf ( ( A O B ) , 
RR* ,  <  )  ->  E. w  e.  QQ  ( A  <  w  /\  w  < inf ( ( A O B ) , 
RR* ,  <  ) ) ) )
5010, 9, 49syl2anc 693 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( A  < inf ( ( A O B ) , 
RR* ,  <  )  ->  E. w  e.  QQ  ( A  <  w  /\  w  < inf ( ( A O B ) , 
RR* ,  <  ) ) ) )
5147, 50mtod 189 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  -.  A  < inf ( ( A O B ) ,  RR* ,  <  ) )
529, 10, 51xrnltled 10106 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  -> inf ( ( A O B ) ,  RR* ,  <  )  <_  A )
534simp2d 1074 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A R w )
5410adantr 481 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A  e.  RR* )
55 ixxub.5 . . . . . 6  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )
5654, 5, 55syl2anc 693 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  ( A R w  ->  A  <_  w ) )
5753, 56mpd 15 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  /\  w  e.  ( A O B ) )  ->  A  <_  w )
5857ralrimiva 2966 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A. w  e.  ( A O B ) A  <_  w
)
59 infxrgelb 12165 . . . 4  |-  ( ( ( A O B )  C_  RR*  /\  A  e.  RR* )  ->  ( A  <_ inf ( ( A O B ) , 
RR* ,  <  )  <->  A. w  e.  ( A O B ) A  <_  w
) )
607, 10, 59syl2anc 693 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  ( A  <_ inf ( ( A O B ) , 
RR* ,  <  )  <->  A. w  e.  ( A O B ) A  <_  w
) )
6158, 60mpbird 247 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  A  <_ inf ( ( A O B ) ,  RR* ,  <  ) )
629, 10, 52, 61xrletrid 11986 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  -> inf ( ( A O B ) ,  RR* ,  <  )  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653  (class class class)co 6650    |-> cmpt2 6652  infcinf 8347   RR*cxr 10073    < clt 10074    <_ cle 10075   QQcq 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789
This theorem is referenced by:  ioorf  23341  ioorinv2  23343  ioossioobi  39743
  Copyright terms: Public domain W3C validator