MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem3 Structured version   Visualization version   GIF version

Theorem lbsextlem3 19160
Description: Lemma for lbsext 19163. A chain in 𝑆 has an upper bound in 𝑆. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
lbsext.p 𝑃 = (LSubSp‘𝑊)
lbsext.a (𝜑𝐴𝑆)
lbsext.z (𝜑𝐴 ≠ ∅)
lbsext.r (𝜑 → [] Or 𝐴)
lbsext.t 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
Assertion
Ref Expression
lbsextlem3 (𝜑 𝐴𝑆)
Distinct variable groups:   𝑥,𝐽   𝑥,𝑢,𝜑   𝑢,𝑆,𝑥   𝑥,𝑧,𝐶   𝑧,𝑢,𝑁,𝑥   𝑢,𝑉,𝑥,𝑧   𝑢,𝑊,𝑥   𝑢,𝐴,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑢)   𝑃(𝑥,𝑧,𝑢)   𝑆(𝑧)   𝑇(𝑥,𝑧,𝑢)   𝐽(𝑧,𝑢)   𝑊(𝑧)

Proof of Theorem lbsextlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lbsext.a . . . . 5 (𝜑𝐴𝑆)
2 lbsext.s . . . . . 6 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
3 ssrab2 3687 . . . . . 6 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⊆ 𝒫 𝑉
42, 3eqsstri 3635 . . . . 5 𝑆 ⊆ 𝒫 𝑉
51, 4syl6ss 3615 . . . 4 (𝜑𝐴 ⊆ 𝒫 𝑉)
6 sspwuni 4611 . . . 4 (𝐴 ⊆ 𝒫 𝑉 𝐴𝑉)
75, 6sylib 208 . . 3 (𝜑 𝐴𝑉)
8 lbsext.v . . . . 5 𝑉 = (Base‘𝑊)
9 fvex 6201 . . . . 5 (Base‘𝑊) ∈ V
108, 9eqeltri 2697 . . . 4 𝑉 ∈ V
1110elpw2 4828 . . 3 ( 𝐴 ∈ 𝒫 𝑉 𝐴𝑉)
127, 11sylibr 224 . 2 (𝜑 𝐴 ∈ 𝒫 𝑉)
13 ssintub 4495 . . . . 5 𝐶 {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
14 simpl 473 . . . . . . . . . 10 ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) → 𝐶𝑧)
1514a1i 11 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑉 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) → 𝐶𝑧))
1615ss2rabi 3684 . . . . . . . 8 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
172, 16eqsstri 3635 . . . . . . 7 𝑆 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
181, 17syl6ss 3615 . . . . . 6 (𝜑𝐴 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧})
19 intss 4498 . . . . . 6 (𝐴 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧} → {𝑧 ∈ 𝒫 𝑉𝐶𝑧} ⊆ 𝐴)
2018, 19syl 17 . . . . 5 (𝜑 {𝑧 ∈ 𝒫 𝑉𝐶𝑧} ⊆ 𝐴)
2113, 20syl5ss 3614 . . . 4 (𝜑𝐶 𝐴)
22 lbsext.z . . . . 5 (𝜑𝐴 ≠ ∅)
23 intssuni 4499 . . . . 5 (𝐴 ≠ ∅ → 𝐴 𝐴)
2422, 23syl 17 . . . 4 (𝜑 𝐴 𝐴)
2521, 24sstrd 3613 . . 3 (𝜑𝐶 𝐴)
26 eluni2 4440 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
27 simpll1 1100 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝜑)
28 lbsext.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LVec)
29 lveclmod 19106 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
3028, 29syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
3127, 30syl 17 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑊 ∈ LMod)
3227, 1syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝐴𝑆)
33 lbsext.r . . . . . . . . . . . . . . . . 17 (𝜑 → [] Or 𝐴)
3427, 33syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → [] Or 𝐴)
35 simpll2 1101 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑦𝐴)
36 simplr 792 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑢𝐴)
37 sorpssun 6944 . . . . . . . . . . . . . . . 16 (( [] Or 𝐴 ∧ (𝑦𝐴𝑢𝐴)) → (𝑦𝑢) ∈ 𝐴)
3834, 35, 36, 37syl12anc 1324 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝐴)
3932, 38sseldd 3604 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝑆)
404, 39sseldi 3601 . . . . . . . . . . . . 13 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝒫 𝑉)
4140elpwid 4170 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ⊆ 𝑉)
4241ssdifssd 3748 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ((𝑦𝑢) ∖ {𝑥}) ⊆ 𝑉)
43 ssun2 3777 . . . . . . . . . . . 12 𝑢 ⊆ (𝑦𝑢)
44 ssdif 3745 . . . . . . . . . . . 12 (𝑢 ⊆ (𝑦𝑢) → (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥}))
4543, 44mp1i 13 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥}))
46 lbsext.n . . . . . . . . . . . 12 𝑁 = (LSpan‘𝑊)
478, 46lspss 18984 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ((𝑦𝑢) ∖ {𝑥}) ⊆ 𝑉 ∧ (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥})) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
4831, 42, 45, 47syl3anc 1326 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
49 simpr 477 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
5048, 49sseldd 3604 . . . . . . . . 9 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
51 sseq2 3627 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑢) → (𝐶𝑧𝐶 ⊆ (𝑦𝑢)))
52 difeq1 3721 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑦𝑢) → (𝑧 ∖ {𝑥}) = ((𝑦𝑢) ∖ {𝑥}))
5352fveq2d 6195 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦𝑢) → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘((𝑦𝑢) ∖ {𝑥})))
5453eleq2d 2687 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦𝑢) → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5554notbid 308 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑢) → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5655raleqbi1dv 3146 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑢) → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5751, 56anbi12d 747 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑢) → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))))
5857, 2elrab2 3366 . . . . . . . . . . . . 13 ((𝑦𝑢) ∈ 𝑆 ↔ ((𝑦𝑢) ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))))
5958simprbi 480 . . . . . . . . . . . 12 ((𝑦𝑢) ∈ 𝑆 → (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
6059simprd 479 . . . . . . . . . . 11 ((𝑦𝑢) ∈ 𝑆 → ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
6139, 60syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
62 simpll3 1102 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥𝑦)
63 elun1 3780 . . . . . . . . . . 11 (𝑥𝑦𝑥 ∈ (𝑦𝑢))
6462, 63syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑦𝑢))
65 rsp 2929 . . . . . . . . . 10 (∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})) → (𝑥 ∈ (𝑦𝑢) → ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
6661, 64, 65sylc 65 . . . . . . . . 9 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
6750, 66pm2.65da 600 . . . . . . . 8 (((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) → ¬ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
6867nrexdv 3001 . . . . . . 7 ((𝜑𝑦𝐴𝑥𝑦) → ¬ ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
69 lbsext.j . . . . . . . . . . . . . . . 16 𝐽 = (LBasis‘𝑊)
70 lbsext.c . . . . . . . . . . . . . . . 16 (𝜑𝐶𝑉)
71 lbsext.x . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
72 lbsext.p . . . . . . . . . . . . . . . 16 𝑃 = (LSubSp‘𝑊)
73 lbsext.t . . . . . . . . . . . . . . . 16 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
748, 69, 46, 28, 70, 71, 2, 72, 1, 22, 33, 73lbsextlem2 19159 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇𝑃 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇))
7574simpld 475 . . . . . . . . . . . . . 14 (𝜑𝑇𝑃)
768, 72lssss 18937 . . . . . . . . . . . . . 14 (𝑇𝑃𝑇𝑉)
7775, 76syl 17 . . . . . . . . . . . . 13 (𝜑𝑇𝑉)
7874simprd 479 . . . . . . . . . . . . 13 (𝜑 → ( 𝐴 ∖ {𝑥}) ⊆ 𝑇)
798, 46lspss 18984 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑇𝑉 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ (𝑁𝑇))
8030, 77, 78, 79syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ (𝑁𝑇))
8172, 46lspid 18982 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑇𝑃) → (𝑁𝑇) = 𝑇)
8230, 75, 81syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑇) = 𝑇)
8380, 82sseqtrd 3641 . . . . . . . . . . 11 (𝜑 → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑇)
84833ad2ant1 1082 . . . . . . . . . 10 ((𝜑𝑦𝐴𝑥𝑦) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑇)
8584, 73syl6sseq 3651 . . . . . . . . 9 ((𝜑𝑦𝐴𝑥𝑦) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
8685sseld 3602 . . . . . . . 8 ((𝜑𝑦𝐴𝑥𝑦) → (𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})) → 𝑥 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))))
87 eliun 4524 . . . . . . . 8 (𝑥 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
8886, 87syl6ib 241 . . . . . . 7 ((𝜑𝑦𝐴𝑥𝑦) → (𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})) → ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))))
8968, 88mtod 189 . . . . . 6 ((𝜑𝑦𝐴𝑥𝑦) → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))
9089rexlimdv3a 3033 . . . . 5 (𝜑 → (∃𝑦𝐴 𝑥𝑦 → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9126, 90syl5bi 232 . . . 4 (𝜑 → (𝑥 𝐴 → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9291ralrimiv 2965 . . 3 (𝜑 → ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))
9325, 92jca 554 . 2 (𝜑 → (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
94 sseq2 3627 . . . 4 (𝑧 = 𝐴 → (𝐶𝑧𝐶 𝐴))
95 difeq1 3721 . . . . . . . 8 (𝑧 = 𝐴 → (𝑧 ∖ {𝑥}) = ( 𝐴 ∖ {𝑥}))
9695fveq2d 6195 . . . . . . 7 (𝑧 = 𝐴 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘( 𝐴 ∖ {𝑥})))
9796eleq2d 2687 . . . . . 6 (𝑧 = 𝐴 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9897notbid 308 . . . . 5 (𝑧 = 𝐴 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9998raleqbi1dv 3146 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
10094, 99anbi12d 747 . . 3 (𝑧 = 𝐴 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))))
101100, 2elrab2 3366 . 2 ( 𝐴𝑆 ↔ ( 𝐴 ∈ 𝒫 𝑉 ∧ (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))))
10212, 93, 101sylanbrc 698 1 (𝜑 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436   cint 4475   ciun 4520   Or wor 5034  cfv 5888   [] crpss 6936  Basecbs 15857  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LBasisclbs 19074  LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  lbsextlem4  19161
  Copyright terms: Public domain W3C validator