![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2n | Structured version Visualization version GIF version |
Description: Lemma for lclkr 36822. (Contributed by NM, 12-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2m.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lclkrlem2m.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2m.q | ⊢ × = (.r‘𝑆) |
lclkrlem2m.z | ⊢ 0 = (0g‘𝑆) |
lclkrlem2m.i | ⊢ 𝐼 = (invr‘𝑆) |
lclkrlem2m.m | ⊢ − = (-g‘𝑈) |
lclkrlem2m.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2m.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2m.p | ⊢ + = (+g‘𝐷) |
lclkrlem2m.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2m.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lclkrlem2m.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2m.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2n.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2n.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2n.w | ⊢ (𝜑 → 𝑈 ∈ LVec) |
lclkrlem2n.j | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) |
lclkrlem2n.k | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) |
Ref | Expression |
---|---|
lclkrlem2n | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . 2 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
2 | lclkrlem2n.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
3 | lclkrlem2n.w | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) | |
4 | lveclmod 19106 | . . 3 ⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑈 ∈ LMod) |
6 | lclkrlem2m.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
7 | lclkrlem2m.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lclkrlem2m.p | . . . 4 ⊢ + = (+g‘𝐷) | |
9 | lclkrlem2m.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
10 | lclkrlem2m.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
11 | 6, 7, 8, 5, 9, 10 | ldualvaddcl 34417 | . . 3 ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐹) |
12 | lclkrlem2n.l | . . . 4 ⊢ 𝐿 = (LKer‘𝑈) | |
13 | 6, 12, 1 | lkrlss 34382 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈)) |
14 | 5, 11, 13 | syl2anc 693 | . 2 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈)) |
15 | lclkrlem2n.j | . . 3 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) | |
16 | lclkrlem2m.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
17 | lclkrlem2m.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
18 | lclkrlem2m.z | . . . 4 ⊢ 0 = (0g‘𝑆) | |
19 | lclkrlem2m.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
20 | 16, 17, 18, 6, 12, 3, 11, 19 | ellkr2 34378 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑋) = 0 )) |
21 | 15, 20 | mpbird 247 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐿‘(𝐸 + 𝐺))) |
22 | lclkrlem2n.k | . . 3 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) | |
23 | lclkrlem2m.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
24 | 16, 17, 18, 6, 12, 3, 11, 23 | ellkr2 34378 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑌) = 0 )) |
25 | 22, 24 | mpbird 247 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐿‘(𝐸 + 𝐺))) |
26 | 1, 2, 5, 14, 21, 25 | lspprss 18992 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 {cpr 4179 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 .rcmulr 15942 Scalarcsca 15944 ·𝑠 cvsca 15945 0gc0g 16100 -gcsg 17424 invrcinvr 18671 LModclmod 18863 LSubSpclss 18932 LSpanclspn 18971 LVecclvec 19102 LFnlclfn 34344 LKerclk 34372 LDualcld 34410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-sca 15957 df-vsca 15958 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lfl 34345 df-lkr 34373 df-ldual 34411 |
This theorem is referenced by: lclkrlem2v 36817 |
Copyright terms: Public domain | W3C validator |