Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmcv2 Structured version   Visualization version   GIF version

Theorem lsmcv2 34316
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 29152 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsmcv2.v 𝑉 = (Base‘𝑊)
lsmcv2.s 𝑆 = (LSubSp‘𝑊)
lsmcv2.n 𝑁 = (LSpan‘𝑊)
lsmcv2.p = (LSSum‘𝑊)
lsmcv2.c 𝐶 = ( ⋖L𝑊)
lsmcv2.w (𝜑𝑊 ∈ LVec)
lsmcv2.u (𝜑𝑈𝑆)
lsmcv2.x (𝜑𝑋𝑉)
lsmcv2.l (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)
Assertion
Ref Expression
lsmcv2 (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))

Proof of Theorem lsmcv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsmcv2.l . . 3 (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)
2 lsmcv2.p . . . 4 = (LSSum‘𝑊)
3 lsmcv2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
4 lveclmod 19106 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
6 lsmcv2.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
76lsssssubg 18958 . . . . . 6 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
85, 7syl 17 . . . . 5 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
9 lsmcv2.u . . . . 5 (𝜑𝑈𝑆)
108, 9sseldd 3604 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝑊))
11 lsmcv2.x . . . . . 6 (𝜑𝑋𝑉)
12 lsmcv2.v . . . . . . 7 𝑉 = (Base‘𝑊)
13 lsmcv2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
1412, 6, 13lspsncl 18977 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
155, 11, 14syl2anc 693 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
168, 15sseldd 3604 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
172, 10, 16lssnle 18087 . . 3 (𝜑 → (¬ (𝑁‘{𝑋}) ⊆ 𝑈𝑈 ⊊ (𝑈 (𝑁‘{𝑋}))))
181, 17mpbid 222 . 2 (𝜑𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
19 3simpa 1058 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → (𝜑𝑥𝑆))
20 simp3l 1089 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑈𝑥)
21 simp3r 1090 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))
223adantr 481 . . . . . 6 ((𝜑𝑥𝑆) → 𝑊 ∈ LVec)
239adantr 481 . . . . . 6 ((𝜑𝑥𝑆) → 𝑈𝑆)
24 simpr 477 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑆)
2511adantr 481 . . . . . 6 ((𝜑𝑥𝑆) → 𝑋𝑉)
2612, 6, 13, 2, 22, 23, 24, 25lsmcv 19141 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))
2719, 20, 21, 26syl3anc 1326 . . . 4 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))
28273exp 1264 . . 3 (𝜑 → (𝑥𝑆 → ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))))
2928ralrimiv 2965 . 2 (𝜑 → ∀𝑥𝑆 ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋}))))
30 lsmcv2.c . . 3 𝐶 = ( ⋖L𝑊)
316, 2lsmcl 19083 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑋})) ∈ 𝑆)
325, 9, 15, 31syl3anc 1326 . . 3 (𝜑 → (𝑈 (𝑁‘{𝑋})) ∈ 𝑆)
336, 30, 3, 9, 32lcvbr2 34309 . 2 (𝜑 → (𝑈𝐶(𝑈 (𝑁‘{𝑋})) ↔ (𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ∧ ∀𝑥𝑆 ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋}))))))
3418, 29, 33mpbir2and 957 1 (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574  wpss 3575  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  SubGrpcsubg 17588  LSSumclsm 18049  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102  L clcv 34305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lcv 34306
This theorem is referenced by:  lcv1  34328
  Copyright terms: Public domain W3C validator