![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsass | Structured version Visualization version GIF version |
Description: Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014.) |
Ref | Expression |
---|---|
ldualvsass.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvsass.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualvsass.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualvsass.t | ⊢ × = (.r‘𝑅) |
ldualvsass.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvsass.s | ⊢ · = ( ·𝑠 ‘𝐷) |
ldualvsass.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ldualvsass.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
ldualvsass.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
ldualvsass.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
ldualvsass | ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | ldualvsass.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
3 | ldualvsass.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
4 | ldualvsass.t | . . . 4 ⊢ × = (.r‘𝑅) | |
5 | ldualvsass.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
6 | ldualvsass.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
7 | ldualvsass.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
8 | ldualvsass.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
9 | ldualvsass.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lflvsass 34368 | . . 3 ⊢ (𝜑 → (𝐺 ∘𝑓 × ((Base‘𝑊) × {(𝑌 × 𝑋)})) = ((𝐺 ∘𝑓 × ((Base‘𝑊) × {𝑌})) ∘𝑓 × ((Base‘𝑊) × {𝑋}))) |
11 | ldualvsass.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
12 | ldualvsass.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
13 | 2 | lmodring 18871 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
14 | 6, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
15 | 3, 4 | ringcl 18561 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐾) → (𝑌 × 𝑋) ∈ 𝐾) |
16 | 14, 7, 8, 15 | syl3anc 1326 | . . . 4 ⊢ (𝜑 → (𝑌 × 𝑋) ∈ 𝐾) |
17 | 5, 1, 2, 3, 4, 11, 12, 6, 16, 9 | ldualvs 34424 | . . 3 ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝐺 ∘𝑓 × ((Base‘𝑊) × {(𝑌 × 𝑋)}))) |
18 | 1, 2, 3, 4, 5, 6, 9, 7 | lflvscl 34364 | . . . 4 ⊢ (𝜑 → (𝐺 ∘𝑓 × ((Base‘𝑊) × {𝑌})) ∈ 𝐹) |
19 | 5, 1, 2, 3, 4, 11, 12, 6, 8, 18 | ldualvs 34424 | . . 3 ⊢ (𝜑 → (𝑋 · (𝐺 ∘𝑓 × ((Base‘𝑊) × {𝑌}))) = ((𝐺 ∘𝑓 × ((Base‘𝑊) × {𝑌})) ∘𝑓 × ((Base‘𝑊) × {𝑋}))) |
20 | 10, 17, 19 | 3eqtr4d 2666 | . 2 ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝐺 ∘𝑓 × ((Base‘𝑊) × {𝑌})))) |
21 | 5, 1, 2, 3, 4, 11, 12, 6, 7, 9 | ldualvs 34424 | . . 3 ⊢ (𝜑 → (𝑌 · 𝐺) = (𝐺 ∘𝑓 × ((Base‘𝑊) × {𝑌}))) |
22 | 21 | oveq2d 6666 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌 · 𝐺)) = (𝑋 · (𝐺 ∘𝑓 × ((Base‘𝑊) × {𝑌})))) |
23 | 20, 22 | eqtr4d 2659 | 1 ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {csn 4177 × cxp 5112 ‘cfv 5888 (class class class)co 6650 ∘𝑓 cof 6895 Basecbs 15857 .rcmulr 15942 Scalarcsca 15944 ·𝑠 cvsca 15945 Ringcrg 18547 LModclmod 18863 LFnlclfn 34344 LDualcld 34410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-sca 15957 df-vsca 15958 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-mgp 18490 df-ring 18549 df-lmod 18865 df-lfl 34345 df-ldual 34411 |
This theorem is referenced by: ldualvsass2 34429 |
Copyright terms: Public domain | W3C validator |