MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpilem1 Structured version   Visualization version   GIF version

Theorem leibpilem1 24667
Description: Lemma for leibpi 24669. (Contributed by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
leibpilem1 ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → (𝑁 ∈ ℕ ∧ ((𝑁 − 1) / 2) ∈ ℕ0))

Proof of Theorem leibpilem1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 elnn0 11294 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
21biimpi 206 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32ord 392 . . . . 5 (𝑁 ∈ ℕ0 → (¬ 𝑁 ∈ ℕ → 𝑁 = 0))
43con1d 139 . . . 4 (𝑁 ∈ ℕ0 → (¬ 𝑁 = 0 → 𝑁 ∈ ℕ))
54imp 445 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ)
65adantrr 753 . 2 ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → 𝑁 ∈ ℕ)
7 nn0z 11400 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
87adantr 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
9 odd2np1 15065 . . . . . 6 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
108, 9syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ¬ 𝑁 = 0) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
11 zcn 11382 . . . . . . . . 9 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
12 2cn 11091 . . . . . . . . . . . . 13 2 ∈ ℂ
13 mulcl 10020 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
1412, 13mpan 706 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (2 · 𝑛) ∈ ℂ)
15 ax-1cn 9994 . . . . . . . . . . . 12 1 ∈ ℂ
16 pncan 10287 . . . . . . . . . . . 12 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
1714, 15, 16sylancl 694 . . . . . . . . . . 11 (𝑛 ∈ ℂ → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
1817oveq1d 6665 . . . . . . . . . 10 (𝑛 ∈ ℂ → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
19 2ne0 11113 . . . . . . . . . . 11 2 ≠ 0
20 divcan3 10711 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑛) / 2) = 𝑛)
2112, 19, 20mp3an23 1416 . . . . . . . . . 10 (𝑛 ∈ ℂ → ((2 · 𝑛) / 2) = 𝑛)
2218, 21eqtrd 2656 . . . . . . . . 9 (𝑛 ∈ ℂ → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
2311, 22syl 17 . . . . . . . 8 (𝑛 ∈ ℤ → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
24 id 22 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
2523, 24eqeltrd 2701 . . . . . . 7 (𝑛 ∈ ℤ → ((((2 · 𝑛) + 1) − 1) / 2) ∈ ℤ)
26 oveq1 6657 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) − 1) = (𝑁 − 1))
2726oveq1d 6665 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) − 1) / 2) = ((𝑁 − 1) / 2))
2827eleq1d 2686 . . . . . . 7 (((2 · 𝑛) + 1) = 𝑁 → (((((2 · 𝑛) + 1) − 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2925, 28syl5ibcom 235 . . . . . 6 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 − 1) / 2) ∈ ℤ))
3029rexlimiv 3027 . . . . 5 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → ((𝑁 − 1) / 2) ∈ ℤ)
3110, 30syl6bi 243 . . . 4 ((𝑁 ∈ ℕ0 ∧ ¬ 𝑁 = 0) → (¬ 2 ∥ 𝑁 → ((𝑁 − 1) / 2) ∈ ℤ))
3231impr 649 . . 3 ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → ((𝑁 − 1) / 2) ∈ ℤ)
33 nnm1nn0 11334 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
346, 33syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → (𝑁 − 1) ∈ ℕ0)
3534nn0red 11352 . . . 4 ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → (𝑁 − 1) ∈ ℝ)
3634nn0ge0d 11354 . . . 4 ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → 0 ≤ (𝑁 − 1))
37 2re 11090 . . . . 5 2 ∈ ℝ
3837a1i 11 . . . 4 ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → 2 ∈ ℝ)
39 2pos 11112 . . . . 5 0 < 2
4039a1i 11 . . . 4 ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → 0 < 2)
41 divge0 10892 . . . 4 ((((𝑁 − 1) ∈ ℝ ∧ 0 ≤ (𝑁 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑁 − 1) / 2))
4235, 36, 38, 40, 41syl22anc 1327 . . 3 ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → 0 ≤ ((𝑁 − 1) / 2))
43 elnn0z 11390 . . 3 (((𝑁 − 1) / 2) ∈ ℕ0 ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 − 1) / 2)))
4432, 42, 43sylanbrc 698 . 2 ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → ((𝑁 − 1) / 2) ∈ ℕ0)
456, 44jca 554 1 ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → (𝑁 ∈ ℕ ∧ ((𝑁 − 1) / 2) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-dvds 14984
This theorem is referenced by:  leibpilem2  24668  leibpi  24669
  Copyright terms: Public domain W3C validator