Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0 Structured version   Visualization version   GIF version

Theorem lfl0 34352
Description: A linear functional is zero at the zero vector. (lnfn0i 28901 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lfl0.d 𝐷 = (Scalar‘𝑊)
lfl0.o 0 = (0g𝐷)
lfl0.z 𝑍 = (0g𝑊)
lfl0.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl0 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = 0 )

Proof of Theorem lfl0
StepHypRef Expression
1 simpl 473 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝑊 ∈ LMod)
2 simpr 477 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺𝐹)
3 lfl0.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
4 eqid 2622 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2622 . . . . . . 7 (1r𝐷) = (1r𝐷)
63, 4, 5lmod1cl 18890 . . . . . 6 (𝑊 ∈ LMod → (1r𝐷) ∈ (Base‘𝐷))
76adantr 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (1r𝐷) ∈ (Base‘𝐷))
8 eqid 2622 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
9 lfl0.z . . . . . . 7 𝑍 = (0g𝑊)
108, 9lmod0vcl 18892 . . . . . 6 (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝑊))
1110adantr 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝑍 ∈ (Base‘𝑊))
12 eqid 2622 . . . . . 6 (+g𝑊) = (+g𝑊)
13 eqid 2622 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
14 eqid 2622 . . . . . 6 (+g𝐷) = (+g𝐷)
15 eqid 2622 . . . . . 6 (.r𝐷) = (.r𝐷)
16 lfl0.f . . . . . 6 𝐹 = (LFnl‘𝑊)
178, 12, 3, 13, 4, 14, 15, 16lfli 34348 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((1r𝐷) ∈ (Base‘𝐷) ∧ 𝑍 ∈ (Base‘𝑊) ∧ 𝑍 ∈ (Base‘𝑊))) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)))
181, 2, 7, 11, 11, 17syl113anc 1338 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)))
198, 3, 13, 4lmodvscl 18880 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (1r𝐷) ∈ (Base‘𝐷) ∧ 𝑍 ∈ (Base‘𝑊)) → ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊))
201, 7, 11, 19syl3anc 1326 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊))
218, 12, 9lmod0vrid 18894 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊)) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = ((1r𝐷)( ·𝑠𝑊)𝑍))
2220, 21syldan 487 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = ((1r𝐷)( ·𝑠𝑊)𝑍))
238, 3, 13, 5lmodvs1 18891 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑊)) → ((1r𝐷)( ·𝑠𝑊)𝑍) = 𝑍)
2411, 23syldan 487 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)( ·𝑠𝑊)𝑍) = 𝑍)
2522, 24eqtrd 2656 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = 𝑍)
2625fveq2d 6195 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (𝐺𝑍))
273lmodring 18871 . . . . . . 7 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
2827adantr 481 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐷 ∈ Ring)
293, 4, 8, 16lflcl 34351 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑍 ∈ (Base‘𝑊)) → (𝐺𝑍) ∈ (Base‘𝐷))
3011, 29mpd3an3 1425 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) ∈ (Base‘𝐷))
314, 15, 5ringlidm 18571 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → ((1r𝐷)(.r𝐷)(𝐺𝑍)) = (𝐺𝑍))
3228, 30, 31syl2anc 693 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)(.r𝐷)(𝐺𝑍)) = (𝐺𝑍))
3332oveq1d 6665 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)) = ((𝐺𝑍)(+g𝐷)(𝐺𝑍)))
3418, 26, 333eqtr3d 2664 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = ((𝐺𝑍)(+g𝐷)(𝐺𝑍)))
3534oveq1d 6665 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)))
36 ringgrp 18552 . . . 4 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
3728, 36syl 17 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐷 ∈ Grp)
38 lfl0.o . . . 4 0 = (0g𝐷)
39 eqid 2622 . . . 4 (-g𝐷) = (-g𝐷)
404, 38, 39grpsubid 17499 . . 3 ((𝐷 ∈ Grp ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = 0 )
4137, 30, 40syl2anc 693 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = 0 )
424, 14, 39grppncan 17506 . . 3 ((𝐷 ∈ Grp ∧ (𝐺𝑍) ∈ (Base‘𝐷) ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)) = (𝐺𝑍))
4337, 30, 30, 42syl3anc 1326 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)) = (𝐺𝑍))
4435, 41, 433eqtr3rd 2665 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  Grpcgrp 17422  -gcsg 17424  1rcur 18501  Ringcrg 18547  LModclmod 18863  LFnlclfn 34344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lfl 34345
This theorem is referenced by:  lflmul  34355  lkrlss  34382  dochkr1  36767  lcfrlem28  36859  hdmapip0  37207
  Copyright terms: Public domain W3C validator