Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz Structured version   Visualization version   Unicode version

Theorem limsupvaluz 39940
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -oo and the r.h.s. would be +oo). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz.m  |-  ( ph  ->  M  e.  ZZ )
limsupvaluz.z  |-  Z  =  ( ZZ>= `  M )
limsupvaluz.f  |-  ( ph  ->  F : Z --> RR* )
Assertion
Ref Expression
limsupvaluz  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
) ,  RR* ,  <  ) )
Distinct variable groups:    k, F    k, Z
Allowed substitution hints:    ph( k)    M( k)

Proof of Theorem limsupvaluz
Dummy variables  i  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( i  e.  RR  |->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( i  e.  RR  |->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
2 limsupvaluz.f . . . . 5  |-  ( ph  ->  F : Z --> RR* )
3 limsupvaluz.z . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
4 fvex 6201 . . . . . . 7  |-  ( ZZ>= `  M )  e.  _V
53, 4eqeltri 2697 . . . . . 6  |-  Z  e. 
_V
65a1i 11 . . . . 5  |-  ( ph  ->  Z  e.  _V )
72, 6fexd 39296 . . . 4  |-  ( ph  ->  F  e.  _V )
87elexd 3214 . . 3  |-  ( ph  ->  F  e.  _V )
9 uzssre 39620 . . . . 5  |-  ( ZZ>= `  M )  C_  RR
103, 9eqsstri 3635 . . . 4  |-  Z  C_  RR
1110a1i 11 . . 3  |-  ( ph  ->  Z  C_  RR )
12 limsupvaluz.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
133uzsup 12662 . . . 4  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  = +oo )
1412, 13syl 17 . . 3  |-  ( ph  ->  sup ( Z ,  RR* ,  <  )  = +oo )
151, 8, 11, 14limsupval2 14211 . 2  |-  ( ph  ->  ( limsup `  F )  = inf ( ( ( i  e.  RR  |->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) " Z ) ,  RR* ,  <  )
)
1611mptima2 39457 . . . 4  |-  ( ph  ->  ( ( i  e.  RR  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) " Z )  =  ran  ( i  e.  Z  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
17 oveq1 6657 . . . . . . . . . . 11  |-  ( i  =  n  ->  (
i [,) +oo )  =  ( n [,) +oo ) )
1817imaeq2d 5466 . . . . . . . . . 10  |-  ( i  =  n  ->  ( F " ( i [,) +oo ) )  =  ( F " ( n [,) +oo ) ) )
1918ineq1d 3813 . . . . . . . . 9  |-  ( i  =  n  ->  (
( F " (
i [,) +oo )
)  i^i  RR* )  =  ( ( F "
( n [,) +oo ) )  i^i  RR* ) )
2019supeq1d 8352 . . . . . . . 8  |-  ( i  =  n  ->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  =  sup ( ( ( F " (
n [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )
2120cbvmptv 4750 . . . . . . 7  |-  ( i  e.  Z  |->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( n  e.  Z  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
2221a1i 11 . . . . . 6  |-  ( ph  ->  ( i  e.  Z  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( n  e.  Z  |->  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
23 fimass 6081 . . . . . . . . . . . 12  |-  ( F : Z --> RR*  ->  ( F " ( n [,) +oo ) ) 
C_  RR* )
242, 23syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( F " (
n [,) +oo )
)  C_  RR* )
25 df-ss 3588 . . . . . . . . . . . 12  |-  ( ( F " ( n [,) +oo ) ) 
C_  RR*  <->  ( ( F
" ( n [,) +oo ) )  i^i  RR* )  =  ( F " ( n [,) +oo ) ) )
2625biimpi 206 . . . . . . . . . . 11  |-  ( ( F " ( n [,) +oo ) ) 
C_  RR*  ->  ( ( F " ( n [,) +oo ) )  i^i  RR* )  =  ( F " ( n [,) +oo ) ) )
2724, 26syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( F "
( n [,) +oo ) )  i^i  RR* )  =  ( F " ( n [,) +oo ) ) )
2827adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  Z )  ->  (
( F " (
n [,) +oo )
)  i^i  RR* )  =  ( F " (
n [,) +oo )
) )
29 df-ima 5127 . . . . . . . . . 10  |-  ( F
" ( n [,) +oo ) )  =  ran  ( F  |`  ( n [,) +oo ) )
3029a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  Z )  ->  ( F " ( n [,) +oo ) )  =  ran  ( F  |`  ( n [,) +oo ) ) )
312freld 39425 . . . . . . . . . . . . 13  |-  ( ph  ->  Rel  F )
32 resindm 5444 . . . . . . . . . . . . 13  |-  ( Rel 
F  ->  ( F  |`  ( ( n [,) +oo )  i^i  dom  F
) )  =  ( F  |`  ( n [,) +oo ) ) )
3331, 32syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  |`  (
( n [,) +oo )  i^i  dom  F )
)  =  ( F  |`  ( n [,) +oo ) ) )
3433adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  Z )  ->  ( F  |`  ( ( n [,) +oo )  i^i 
dom  F ) )  =  ( F  |`  ( n [,) +oo ) ) )
35 incom 3805 . . . . . . . . . . . . . . 15  |-  ( ( n [,) +oo )  i^i  Z )  =  ( Z  i^i  ( n [,) +oo ) )
363ineq1i 3810 . . . . . . . . . . . . . . 15  |-  ( Z  i^i  ( n [,) +oo ) )  =  ( ( ZZ>= `  M )  i^i  ( n [,) +oo ) )
3735, 36eqtri 2644 . . . . . . . . . . . . . 14  |-  ( ( n [,) +oo )  i^i  Z )  =  ( ( ZZ>= `  M )  i^i  ( n [,) +oo ) )
3837a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
( n [,) +oo )  i^i  Z )  =  ( ( ZZ>= `  M
)  i^i  ( n [,) +oo ) ) )
392fdmd 39420 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  F  =  Z )
4039ineq2d 3814 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( n [,) +oo )  i^i  dom  F
)  =  ( ( n [,) +oo )  i^i  Z ) )
4140adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  (
( n [,) +oo )  i^i  dom  F )  =  ( ( n [,) +oo )  i^i 
Z ) )
423eleq2i 2693 . . . . . . . . . . . . . . . 16  |-  ( n  e.  Z  <->  n  e.  ( ZZ>= `  M )
)
4342biimpi 206 . . . . . . . . . . . . . . 15  |-  ( n  e.  Z  ->  n  e.  ( ZZ>= `  M )
)
4443adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ( ZZ>= `  M )
)
4544uzinico2 39789 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  Z )  ->  ( ZZ>=
`  n )  =  ( ( ZZ>= `  M
)  i^i  ( n [,) +oo ) ) )
4638, 41, 453eqtr4d 2666 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  Z )  ->  (
( n [,) +oo )  i^i  dom  F )  =  ( ZZ>= `  n
) )
4746reseq2d 5396 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  Z )  ->  ( F  |`  ( ( n [,) +oo )  i^i 
dom  F ) )  =  ( F  |`  ( ZZ>= `  n )
) )
4834, 47eqtr3d 2658 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  Z )  ->  ( F  |`  ( n [,) +oo ) )  =  ( F  |`  ( ZZ>= `  n ) ) )
4948rneqd 5353 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  Z )  ->  ran  ( F  |`  ( n [,) +oo ) )  =  ran  ( F  |`  ( ZZ>= `  n )
) )
5028, 30, 493eqtrd 2660 . . . . . . . 8  |-  ( (
ph  /\  n  e.  Z )  ->  (
( F " (
n [,) +oo )
)  i^i  RR* )  =  ran  ( F  |`  ( ZZ>= `  n )
) )
5150supeq1d 8352 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
)
5251mpteq2dva 4744 . . . . . 6  |-  ( ph  ->  ( n  e.  Z  |->  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) )
5322, 52eqtrd 2656 . . . . 5  |-  ( ph  ->  ( i  e.  Z  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) )
5453rneqd 5353 . . . 4  |-  ( ph  ->  ran  ( i  e.  Z  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) )
5516, 54eqtrd 2656 . . 3  |-  ( ph  ->  ( ( i  e.  RR  |->  sup ( ( ( F " ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) " Z )  =  ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) )
5655infeq1d 8383 . 2  |-  ( ph  -> inf ( ( ( i  e.  RR  |->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) " Z ) ,  RR* ,  <  )  = inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
) ,  RR* ,  <  ) )
57 fveq2 6191 . . . . . . . . 9  |-  ( n  =  k  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  k )
)
5857reseq2d 5396 . . . . . . . 8  |-  ( n  =  k  ->  ( F  |`  ( ZZ>= `  n
) )  =  ( F  |`  ( ZZ>= `  k ) ) )
5958rneqd 5353 . . . . . . 7  |-  ( n  =  k  ->  ran  ( F  |`  ( ZZ>= `  n ) )  =  ran  ( F  |`  ( ZZ>= `  k )
) )
6059supeq1d 8352 . . . . . 6  |-  ( n  =  k  ->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  )  =  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
)
6160cbvmptv 4750 . . . . 5  |-  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
)  =  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
)
6261rneqi 5352 . . . 4  |-  ran  (
n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n )
) ,  RR* ,  <  ) )  =  ran  (
k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  k )
) ,  RR* ,  <  ) )
6362infeq1i 8384 . . 3  |- inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  n
) ) ,  RR* ,  <  ) ) , 
RR* ,  <  )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
) ,  RR* ,  <  )
6463a1i 11 . 2  |-  ( ph  -> inf ( ran  ( n  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  n ) ) ,  RR* ,  <  )
) ,  RR* ,  <  )  = inf ( ran  (
k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  k )
) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
6515, 56, 643eqtrd 2660 1  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
) ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346  infcinf 8347   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074   ZZcz 11377   ZZ>=cuz 11687   [,)cico 12177   limsupclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-ico 12181  df-fl 12593  df-limsup 14202
This theorem is referenced by:  limsupvaluzmpt  39949  limsupvaluz2  39970  limsupgtlem  40009
  Copyright terms: Public domain W3C validator