MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmnn Structured version   Visualization version   GIF version

Theorem lmnn 23061
Description: A condition that implies convergence. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmnn.2 𝐽 = (MetOpen‘𝐷)
lmnn.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmnn.4 (𝜑𝑃𝑋)
lmnn.5 (𝜑𝐹:ℕ⟶𝑋)
lmnn.6 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
Assertion
Ref Expression
lmnn (𝜑𝐹(⇝𝑡𝐽)𝑃)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑃,𝑘   𝜑,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐽(𝑘)

Proof of Theorem lmnn
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmnn.4 . 2 (𝜑𝑃𝑋)
2 rpreccl 11857 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
32adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
43rpred 11872 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
53rpge0d 11876 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ (1 / 𝑥))
6 flge0nn0 12621 . . . . . 6 (((1 / 𝑥) ∈ ℝ ∧ 0 ≤ (1 / 𝑥)) → (⌊‘(1 / 𝑥)) ∈ ℕ0)
74, 5, 6syl2anc 693 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(1 / 𝑥)) ∈ ℕ0)
8 nn0p1nn 11332 . . . . 5 ((⌊‘(1 / 𝑥)) ∈ ℕ0 → ((⌊‘(1 / 𝑥)) + 1) ∈ ℕ)
97, 8syl 17 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℕ)
10 lmnn.3 . . . . . . . 8 (𝜑𝐷 ∈ (∞Met‘𝑋))
1110ad2antrr 762 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝐷 ∈ (∞Met‘𝑋))
12 lmnn.5 . . . . . . . . 9 (𝜑𝐹:ℕ⟶𝑋)
1312ad2antrr 762 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝐹:ℕ⟶𝑋)
14 eluznn 11758 . . . . . . . . 9 ((((⌊‘(1 / 𝑥)) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℕ)
159, 14sylan 488 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℕ)
1613, 15ffvelrnd 6360 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (𝐹𝑘) ∈ 𝑋)
171ad2antrr 762 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑃𝑋)
18 xmetcl 22136 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑃𝑋) → ((𝐹𝑘)𝐷𝑃) ∈ ℝ*)
1911, 16, 17, 18syl3anc 1326 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) ∈ ℝ*)
2015nnrecred 11066 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) ∈ ℝ)
2120rexrd 10089 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) ∈ ℝ*)
22 rpxr 11840 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
2322ad2antlr 763 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑥 ∈ ℝ*)
24 lmnn.6 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
2524adantlr 751 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
2615, 25syldan 487 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
274adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) ∈ ℝ)
289nnred 11035 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℝ)
2928adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℝ)
3015nnred 11035 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℝ)
31 flltp1 12601 . . . . . . . . 9 ((1 / 𝑥) ∈ ℝ → (1 / 𝑥) < ((⌊‘(1 / 𝑥)) + 1))
3227, 31syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) < ((⌊‘(1 / 𝑥)) + 1))
33 eluzle 11700 . . . . . . . . 9 (𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1)) → ((⌊‘(1 / 𝑥)) + 1) ≤ 𝑘)
3433adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((⌊‘(1 / 𝑥)) + 1) ≤ 𝑘)
3527, 29, 30, 32, 34ltletrd 10197 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) < 𝑘)
36 simplr 792 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑥 ∈ ℝ+)
37 rpregt0 11846 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
38 nnrp 11842 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
3938rpregt0d 11878 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
40 ltrec1 10910 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4137, 39, 40syl2an 494 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑘 ∈ ℕ) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4236, 15, 41syl2anc 693 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4335, 42mpbid 222 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) < 𝑥)
4419, 21, 23, 26, 43xrlttrd 11990 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) < 𝑥)
4544ralrimiva 2966 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥)
46 fveq2 6191 . . . . . 6 (𝑗 = ((⌊‘(1 / 𝑥)) + 1) → (ℤ𝑗) = (ℤ‘((⌊‘(1 / 𝑥)) + 1)))
4746raleqdv 3144 . . . . 5 (𝑗 = ((⌊‘(1 / 𝑥)) + 1) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥))
4847rspcev 3309 . . . 4 ((((⌊‘(1 / 𝑥)) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
499, 45, 48syl2anc 693 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
5049ralrimiva 2966 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
51 lmnn.2 . . 3 𝐽 = (MetOpen‘𝐷)
52 nnuz 11723 . . 3 ℕ = (ℤ‘1)
53 1zzd 11408 . . 3 (𝜑 → 1 ∈ ℤ)
54 eqidd 2623 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
5551, 10, 52, 53, 54, 12lmmbrf 23060 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)))
561, 50, 55mpbir2and 957 1 (𝜑𝐹(⇝𝑡𝐽)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075   / cdiv 10684  cn 11020  0cn0 11292  cuz 11687  +crp 11832  cfl 12591  ∞Metcxmt 19731  MetOpencmopn 19736  𝑡clm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fl 12593  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-lm 21033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator