| Step | Hyp | Ref
| Expression |
| 1 | | difssd 3738 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) ⊆ (𝐴(,)𝐵)) |
| 2 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵)) |
| 3 | | ubioo 12207 |
. . . . . . . . . . . . . 14
⊢ ¬
𝐵 ∈ (𝐴(,)𝐵) |
| 4 | | eleq1 2689 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵))) |
| 5 | 4 | biimpcd 239 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 𝐵 → 𝐵 ∈ (𝐴(,)𝐵))) |
| 6 | 3, 5 | mtoi 190 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐵) |
| 7 | 6 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵) |
| 8 | | velsn 4193 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) |
| 9 | 7, 8 | sylnibr 319 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {𝐵}) |
| 10 | 2, 9 | eldifd 3585 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐵})) |
| 11 | 10 | ex 450 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐵}))) |
| 12 | 11 | ssrdv 3609 |
. . . . . . . 8
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∖ {𝐵})) |
| 13 | 1, 12 | eqssd 3620 |
. . . . . . 7
⊢ (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) = (𝐴(,)𝐵)) |
| 14 | 13 | ineq2d 3814 |
. . . . . 6
⊢ (𝜑 → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵))) |
| 15 | 14 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵))) |
| 16 | | simplrl 800 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ ℝ*) |
| 17 | | simplrr 801 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ ℝ*) |
| 18 | | lptioo2.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 19 | 18 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐴 ∈
ℝ*) |
| 20 | | elioo3g 12204 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (𝑎(,)𝑏) ↔ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝑎 < 𝐵 ∧ 𝐵 < 𝑏))) |
| 21 | 20 | biimpi 206 |
. . . . . . . . . 10
⊢ (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝑎 < 𝐵 ∧ 𝐵 < 𝑏))) |
| 22 | 21 | simpld 475 |
. . . . . . . . 9
⊢ (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*
∧ 𝐵 ∈
ℝ*)) |
| 23 | 22 | simp3d 1075 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 ∈
ℝ*) |
| 24 | 23 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 ∈
ℝ*) |
| 25 | | iooin 12209 |
. . . . . . 7
⊢ (((𝑎 ∈ ℝ*
∧ 𝑏 ∈
ℝ*) ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*))
→ ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎 ≤ 𝐴, 𝐴, 𝑎)(,)if(𝑏 ≤ 𝐵, 𝑏, 𝐵))) |
| 26 | 16, 17, 19, 24, 25 | syl22anc 1327 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎 ≤ 𝐴, 𝐴, 𝑎)(,)if(𝑏 ≤ 𝐵, 𝑏, 𝐵))) |
| 27 | | iftrue 4092 |
. . . . . . . . . . 11
⊢ (𝑎 ≤ 𝐴 → if(𝑎 ≤ 𝐴, 𝐴, 𝑎) = 𝐴) |
| 28 | 27 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎 ≤ 𝐴) → if(𝑎 ≤ 𝐴, 𝐴, 𝑎) = 𝐴) |
| 29 | | lptioo2.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 < 𝐵) |
| 30 | 29 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎 ≤ 𝐴) → 𝐴 < 𝐵) |
| 31 | 28, 30 | eqbrtrd 4675 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎 ≤ 𝐴) → if(𝑎 ≤ 𝐴, 𝐴, 𝑎) < 𝐵) |
| 32 | | iffalse 4095 |
. . . . . . . . . . 11
⊢ (¬
𝑎 ≤ 𝐴 → if(𝑎 ≤ 𝐴, 𝐴, 𝑎) = 𝑎) |
| 33 | 32 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎 ≤ 𝐴) → if(𝑎 ≤ 𝐴, 𝐴, 𝑎) = 𝑎) |
| 34 | 21 | simprd 479 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 < 𝐵 ∧ 𝐵 < 𝑏)) |
| 35 | 34 | simpld 475 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (𝑎(,)𝑏) → 𝑎 < 𝐵) |
| 36 | 35 | ad2antlr 763 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎 ≤ 𝐴) → 𝑎 < 𝐵) |
| 37 | 33, 36 | eqbrtrd 4675 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎 ≤ 𝐴) → if(𝑎 ≤ 𝐴, 𝐴, 𝑎) < 𝐵) |
| 38 | 31, 37 | pm2.61dan 832 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎 ≤ 𝐴, 𝐴, 𝑎) < 𝐵) |
| 39 | 34 | simprd 479 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 < 𝑏) |
| 40 | 22 | simp2d 1074 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ (𝑎(,)𝑏) → 𝑏 ∈ ℝ*) |
| 41 | | xrltnle 10105 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℝ*
∧ 𝑏 ∈
ℝ*) → (𝐵 < 𝑏 ↔ ¬ 𝑏 ≤ 𝐵)) |
| 42 | 23, 40, 41 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ (𝑎(,)𝑏) → (𝐵 < 𝑏 ↔ ¬ 𝑏 ≤ 𝐵)) |
| 43 | 39, 42 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (𝑎(,)𝑏) → ¬ 𝑏 ≤ 𝐵) |
| 44 | | iffalse 4095 |
. . . . . . . . . . 11
⊢ (¬
𝑏 ≤ 𝐵 → if(𝑏 ≤ 𝐵, 𝑏, 𝐵) = 𝐵) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . 10
⊢ (𝐵 ∈ (𝑎(,)𝑏) → if(𝑏 ≤ 𝐵, 𝑏, 𝐵) = 𝐵) |
| 46 | 45 | eqcomd 2628 |
. . . . . . . . 9
⊢ (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 = if(𝑏 ≤ 𝐵, 𝑏, 𝐵)) |
| 47 | 46 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 = if(𝑏 ≤ 𝐵, 𝑏, 𝐵)) |
| 48 | 38, 47 | breqtrd 4679 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎 ≤ 𝐴, 𝐴, 𝑎) < if(𝑏 ≤ 𝐵, 𝑏, 𝐵)) |
| 49 | 19, 16 | ifcld 4131 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎 ≤ 𝐴, 𝐴, 𝑎) ∈
ℝ*) |
| 50 | 47, 24 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑏 ≤ 𝐵, 𝑏, 𝐵) ∈
ℝ*) |
| 51 | | ioon0 12201 |
. . . . . . . 8
⊢
((if(𝑎 ≤ 𝐴, 𝐴, 𝑎) ∈ ℝ* ∧ if(𝑏 ≤ 𝐵, 𝑏, 𝐵) ∈ ℝ*) →
((if(𝑎 ≤ 𝐴, 𝐴, 𝑎)(,)if(𝑏 ≤ 𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎 ≤ 𝐴, 𝐴, 𝑎) < if(𝑏 ≤ 𝐵, 𝑏, 𝐵))) |
| 52 | 49, 50, 51 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((if(𝑎 ≤ 𝐴, 𝐴, 𝑎)(,)if(𝑏 ≤ 𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎 ≤ 𝐴, 𝐴, 𝑎) < if(𝑏 ≤ 𝐵, 𝑏, 𝐵))) |
| 53 | 48, 52 | mpbird 247 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → (if(𝑎 ≤ 𝐴, 𝐴, 𝑎)(,)if(𝑏 ≤ 𝐵, 𝑏, 𝐵)) ≠ ∅) |
| 54 | 26, 53 | eqnetrd 2861 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) ≠ ∅) |
| 55 | 15, 54 | eqnetrd 2861 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅) |
| 56 | 55 | ex 450 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*))
→ (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)) |
| 57 | 56 | ralrimivva 2971 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ ℝ* ∀𝑏 ∈ ℝ*
(𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)) |
| 58 | | lptioo2.1 |
. . 3
⊢ 𝐽 = (topGen‘ran
(,)) |
| 59 | | ioossre 12235 |
. . . 4
⊢ (𝐴(,)𝐵) ⊆ ℝ |
| 60 | 59 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 61 | | lptioo2.3 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 62 | 58, 60, 61 | islptre 39851 |
. 2
⊢ (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)) ↔ ∀𝑎 ∈ ℝ* ∀𝑏 ∈ ℝ*
(𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅))) |
| 63 | 57, 62 | mpbird 247 |
1
⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) |