MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmmod Structured version   Visualization version   GIF version

Theorem lsmmod 18088
Description: The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmmod.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmmod (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) = ((𝑆 𝑇) ∩ 𝑈))

Proof of Theorem lsmmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
2 simpl2 1065 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑇 ∈ (SubGrp‘𝐺))
3 inss1 3833 . . . . 5 (𝑇𝑈) ⊆ 𝑇
43a1i 11 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ⊆ 𝑇)
5 lsmmod.p . . . . 5 = (LSSum‘𝐺)
65lsmless2 18075 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑆 (𝑇𝑈)) ⊆ (𝑆 𝑇))
71, 2, 4, 6syl3anc 1326 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ (𝑆 𝑇))
8 simpr 477 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑆𝑈)
9 inss2 3834 . . . . 5 (𝑇𝑈) ⊆ 𝑈
109a1i 11 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ⊆ 𝑈)
11 subgrcl 17599 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
12 eqid 2622 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
1312subgacs 17629 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
14 acsmre 16313 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
151, 11, 13, 144syl 19 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
16 simpl3 1066 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑈 ∈ (SubGrp‘𝐺))
17 mreincl 16259 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
1815, 2, 16, 17syl3anc 1326 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
195lsmlub 18078 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆𝑈 ∧ (𝑇𝑈) ⊆ 𝑈) ↔ (𝑆 (𝑇𝑈)) ⊆ 𝑈))
201, 18, 16, 19syl3anc 1326 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑆𝑈 ∧ (𝑇𝑈) ⊆ 𝑈) ↔ (𝑆 (𝑇𝑈)) ⊆ 𝑈))
218, 10, 20mpbi2and 956 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ 𝑈)
227, 21ssind 3837 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ ((𝑆 𝑇) ∩ 𝑈))
23 elin 3796 . . . 4 (𝑥 ∈ ((𝑆 𝑇) ∩ 𝑈) ↔ (𝑥 ∈ (𝑆 𝑇) ∧ 𝑥𝑈))
24 eqid 2622 . . . . . . . 8 (+g𝐺) = (+g𝐺)
2524, 5lsmelval 18064 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑆 𝑇) ↔ ∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
261, 2, 25syl2anc 693 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ (𝑆 𝑇) ↔ ∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
271adantr 481 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑆 ∈ (SubGrp‘𝐺))
2818adantr 481 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
29 simprll 802 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦𝑆)
30 simprlr 803 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧𝑇)
3127, 11syl 17 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝐺 ∈ Grp)
3216adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
3312subgss 17595 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
3432, 33syl 17 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑈 ⊆ (Base‘𝐺))
358adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑆𝑈)
3635, 29sseldd 3604 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦𝑈)
3734, 36sseldd 3604 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦 ∈ (Base‘𝐺))
38 eqid 2622 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
39 eqid 2622 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
4012, 24, 38, 39grplinv 17468 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑦) = (0g𝐺))
4131, 37, 40syl2anc 693 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑦) = (0g𝐺))
4241oveq1d 6665 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
4339subginvcl 17603 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑈) → ((invg𝐺)‘𝑦) ∈ 𝑈)
4432, 36, 43syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((invg𝐺)‘𝑦) ∈ 𝑈)
4534, 44sseldd 3604 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
46 simpll2 1101 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
4712subgss 17595 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
4846, 47syl 17 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑇 ⊆ (Base‘𝐺))
4948, 30sseldd 3604 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧 ∈ (Base‘𝐺))
5012, 24grpass 17431 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑦) ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)))
5131, 45, 37, 49, 50syl13anc 1328 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)))
5212, 24, 38grplid 17452 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑧 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5331, 49, 52syl2anc 693 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5442, 51, 533eqtr3d 2664 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) = 𝑧)
55 simprr 796 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑦(+g𝐺)𝑧) ∈ 𝑈)
5624subgcl 17604 . . . . . . . . . . . . 13 ((𝑈 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑦) ∈ 𝑈 ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) ∈ 𝑈)
5732, 44, 55, 56syl3anc 1326 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) ∈ 𝑈)
5854, 57eqeltrrd 2702 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧𝑈)
5930, 58elind 3798 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧 ∈ (𝑇𝑈))
6024, 5lsmelvali 18065 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ∈ (SubGrp‘𝐺)) ∧ (𝑦𝑆𝑧 ∈ (𝑇𝑈))) → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))
6127, 28, 29, 59, 60syl22anc 1327 . . . . . . . . 9 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))
6261expr 643 . . . . . . . 8 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ (𝑦𝑆𝑧𝑇)) → ((𝑦(+g𝐺)𝑧) ∈ 𝑈 → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈))))
63 eleq1 2689 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑈))
64 eleq1 2689 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∈ (𝑆 (𝑇𝑈)) ↔ (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈))))
6563, 64imbi12d 334 . . . . . . . 8 (𝑥 = (𝑦(+g𝐺)𝑧) → ((𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈))) ↔ ((𝑦(+g𝐺)𝑧) ∈ 𝑈 → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))))
6662, 65syl5ibrcom 237 . . . . . . 7 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ (𝑦𝑆𝑧𝑇)) → (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6766rexlimdvva 3038 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6826, 67sylbid 230 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ (𝑆 𝑇) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6968impd 447 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑥 ∈ (𝑆 𝑇) ∧ 𝑥𝑈) → 𝑥 ∈ (𝑆 (𝑇𝑈))))
7023, 69syl5bi 232 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ ((𝑆 𝑇) ∩ 𝑈) → 𝑥 ∈ (𝑆 (𝑇𝑈))))
7170ssrdv 3609 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑆 𝑇) ∩ 𝑈) ⊆ (𝑆 (𝑇𝑈)))
7222, 71eqssd 3620 1 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) = ((𝑆 𝑇) ∩ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  cin 3573  wss 3574  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Moorecmre 16242  ACScacs 16245  Grpcgrp 17422  invgcminusg 17423  SubGrpcsubg 17588  LSSumclsm 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-lsm 18051
This theorem is referenced by:  lsmmod2  18089  lcvexchlem2  34322  dihmeetlem9N  36604
  Copyright terms: Public domain W3C validator